MapReduce中的InputSplit

在查看数据块的如何处理之前,我们需要更仔细地了解Hadoop如何存储数据。在Hadoop中,文件由一个一个的记录组成,最终由mapper任务一个一个的处理。

Hadoop通过InputSplit映射Blocks,然后交由Mapper处理InputSplit分片

例如,示例数据集包含有关1987至2008年间美国境内已完成航班的信息。如果要下载数据集可以打开如下网址: http://stat-computing.org/dataexpo/2009/the-data.html 。每一年都会生成一个大文件(例如:2008年文件大小为108M),在每个文件中每单独的一行都代表一次航班信息。换句话说,一行代表一个记录。

1. Block

块是以 block size 进行划分数据。 因此,如果群集中的 block size 为 128 MB,则数据集的每个块将为 128 MB,除非最后一个块小于block size(文件大小不能被 block size 完全整除)。例如下图中文件大小为513MB,513%128=1,最后一个块(e)小于block size,大小为1MB。 因此,块是以 block size 的硬切割,并且块甚至可以在逻辑记录结束之前结束(blocks can end even before a logical record ends)。

假设我们的集群中block size 是128 MB,每个逻辑记录大约100 MB(假设为巨大的记录)。所以第一个记录将完全在一个块中,因为记录大小为100 MB小于块大小128 MB。但是,第二个记录不能完全在一个块中,因此第二条记录将出现在两个块中,从块1开始,在块2中结束。

2. InputSplit

如果分配一个Mapper给块1,在这种情况下,Mapper不能处理第二条记录,因为块1中没有完整第二条记录。因为HDFS不知道文件块中的内容,它不知道记录会什么时候可能溢出到另一个块(because HDFS has no conception of what’s inside the file blocks, it can’t gauge when a record might spill over into another block)。

而InputSplit就是解决这种跨越块边界的那些记录的问题,Hadoop使用逻辑分片Split来表示存储在文件块中的数据,称为输入拆分(InputSplit)。

当MapReduce的作业客户端计算InputSplit时,它会计算出块中第一个完整记录的开始位置和最后一个记录的结束位置。在最后一个记录不完整的情况下,InputSplit 会包括下一个块的位置信息和完成该记录所需的数据的字节偏移(In cases where the last record in a block is incomplete, the input split includes location information for the next block and the byte offset of the data needed to complete the record)。

下图显示了数据块和InputSplit之间的关系:

InputSplit

块是磁盘中的数据存储的物理块,其中InputSplit不是物理数据块。 它是一个Java类,指向块中的开始和结束位置。 因此,当Mapper尝试读取数据时,它清楚地知道从何处开始读取以及在哪里停止读取。 InputSplit的开始位置可以在块中开始,在另一个块中结束。

InputSplit代表了逻辑记录边界,在MapReduce执行期间,Hadoop扫描块并创建InputSplits,并且每个InputSplit将被分配给一个Mapper进行处理。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,864评论 6 494
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,175评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,401评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,170评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,276评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,364评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,401评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,179评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,604评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,902评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,070评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,751评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,380评论 3 319
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,077评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,312评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,924评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,957评论 2 351