okhttp3源码深度学习

OkHttp是一个高效的Http客户端,有如下的特点:

1,支持HTTP2/SPDY黑科技(主要是多路复用)
socket自动选择最好路线,并支持自动重连
拥有自动维护的socket连接池,减少握手次数
拥有队列线程池,轻松写并发
拥有Interceptors轻松处理请求与响应(比如透明GZIP压缩,LOGGING)
基于Headers的缓存策略

一,控制流程学习
同步用法

 client = new OkHttpClient();
        Request request = new Request.Builder()
                .url("https://www.baidu.com")
                .build();
        Response response = null;
        try {
            response = client.newCall(request).execute();
        } catch (IOException e) {
            e.printStackTrace();
        }

异步请求

OkHttpClient okHttpClient = new OkHttpClient();//1.定义一个client  
        Request request = new Request.Builder().url("http://www.baidu.com").build();//2.定义一个request  
        Call call = okHttpClient.newCall(request);//3.使用client去请求  
        call.enqueue(new Callback() {//4.回调方法  
            @Override
            public void onFailure(Call call, IOException e) {

            }

            @Override
            public void onResponse(Call call, Response response) throws IOException {
                String result = response.body().string();//5.获得网络数据  
                System.out.println(result);
            }
        });

这是整个使用的入口,new OkHttpClient()从这里点进去源码来看,基本okhttp所有的配置,属性等等一系列全都放到了这个类中,并且封装到了内部类Builder中,创建client的时候可以直接new 出来,他默认会初始化一个build,也可以自定义配置创建.

  public OkHttpClient() {
    this(new Builder());
  }

仔细的来看一下这些配置都是写什么东西
-------------------------------------------------------------------------------------------
 OkHttpClient(Builder builder) {
    //这个是okhttp的一个重要模块,分发器
    this.dispatcher = builder.dispatcher;
    //代理模块
    this.proxy = builder.proxy;
    //协议集合
    this.protocols = builder.protocols;
    //链接规格
    this.connectionSpecs = builder.connectionSpecs;
    //应用层的拦截器
    this.interceptors = Util.immutableList(builder.interceptors);
    //网络层的拦截器
    this.networkInterceptors = Util.immutableList(builder.networkInterceptors);
    //此乃链接的回调(包括dns开始,结束,链接开始等...一系列回调)
    this.eventListenerFactory = builder.eventListenerFactory;
    //代理选择
    this.proxySelector = builder.proxySelector;
    //cookie,默认是不添加cookies的
    this.cookieJar = builder.cookieJar;
    //缓存
    this.cache = builder.cache;
    //内部缓存
    this.internalCache = builder.internalCache;
    //使用一个单例工场来生产socket
    this.socketFactory = builder.socketFactory;
    //tls证书,以及tls一系列的初始化
    boolean isTLS = false;
    for (ConnectionSpec spec : connectionSpecs) {
      isTLS = isTLS || spec.isTls();
    }

    if (builder.sslSocketFactory != null || !isTLS) {
      this.sslSocketFactory = builder.sslSocketFactory;
      this.certificateChainCleaner = builder.certificateChainCleaner;
    } else {
      X509TrustManager trustManager = systemDefaultTrustManager();
      this.sslSocketFactory = systemDefaultSslSocketFactory(trustManager);
      this.certificateChainCleaner = CertificateChainCleaner.get(trustManager);
    }

    this.hostnameVerifier = builder.hostnameVerifier;
    this.certificatePinner = builder.certificatePinner.withCertificateChainCleaner(
        certificateChainCleaner);
    this.proxyAuthenticator = builder.proxyAuthenticator;
    this.authenticator = builder.authenticator;
    this.connectionPool = builder.connectionPool;
    this.dns = builder.dns;
    this.followSslRedirects = builder.followSslRedirects;
    this.followRedirects = builder.followRedirects;
    this.retryOnConnectionFailure = builder.retryOnConnectionFailure;
    this.connectTimeout = builder.connectTimeout;
    this.readTimeout = builder.readTimeout;
    this.writeTimeout = builder.writeTimeout;
    this.pingInterval = builder.pingInterval;

    if (interceptors.contains(null)) {
      throw new IllegalStateException("Null interceptor: " + interceptors);
    }
    if (networkInterceptors.contains(null)) {
      throw new IllegalStateException("Null network interceptor: " + networkInterceptors);
    }
  }

再看Request,同样也是用build封装了一系列参数来创建一个请求实例

 public static class Builder {
    HttpUrl url;
    String method;
    Headers.Builder headers;
    RequestBody body;
    Object tag;
..........
}

然后是重要的执行
client.newCall(request).execute();
首先创建Call,newcall()方法如下

  @Override public Call newCall(Request request) {
    return RealCall.newRealCall(this, request, false);
  }

----------------
forWebSocket
  static RealCall newRealCall(OkHttpClient client, Request originalRequest, boolean forWebSocket) {
    // Safely publish the Call instance to the EventListener.
    RealCall call = new RealCall(client, originalRequest, forWebSocket);
    call.eventListener = client.eventListenerFactory().create(call);
    return call;
  }
------------  
private RealCall(OkHttpClient client, Request originalRequest, boolean forWebSocket) {
    this.client = client;
    this.originalRequest = originalRequest;
    this.forWebSocket = forWebSocket;
    this.retryAndFollowUpInterceptor = new RetryAndFollowUpInterceptor(client, forWebSocket);
  }

RealCall是一个核心的机制类,该类将构造方法私有化,通过newCall的静态方法来i初始化一个对象,初始化的时候保存了client 对象,originalRequest对象,forWebSocket 默认未false,这是长链接的标示,okhttp本身是可以来实现长链接的,使用WebSocketCall来操作,retryAndFollowUpInterceptor 是默认配置的一个重试和重定向的策略
然后就是最重要的,来看它是如何执行一个请求
这是同步请求执行的方法
首先它是线程安全的,同一时刻只能有一个线程来操作这个call对象,并且该对象只能被执行一次(executed变量未true的时候会抛出一个异常).

  @Override public Response execute() throws IOException {
    synchronized (this) {
      if (executed) throw new IllegalStateException("Already Executed");
      executed = true;
    }
    captureCallStackTrace();
    eventListener.callStart(this);
    try {
      client.dispatcher().executed(this);
      Response result = getResponseWithInterceptorChain();
      if (result == null) throw new IOException("Canceled");
      return result;
    } catch (IOException e) {
      eventListener.callFailed(this, e);
      throw e;
    } finally {
      client.dispatcher().finished(this);
    }
  }

当将executed变量设置未true之后会执行一个captureCallStackTrace()方法,然后执行开始的回调 eventListener.callStart(this),然后走到最关键的 client.dispatcher().executed(this);有client中初始化的分发器开始执行这个方法

然后来看这个分发器Dispatcher
Dispatcher中有以下几个重要的东西

  //最大的执行数量
  private int maxRequests = 64;
  //单个host最大执行的数量
  private int maxRequestsPerHost = 5;
  private @Nullable Runnable idleCallback;
  private @Nullable ExecutorService executorService;

  //这三个是同步请求与异步请求的双端队列
  private final Deque<AsyncCall> readyAsyncCalls = new ArrayDeque<>();
  private final Deque<AsyncCall> runningAsyncCalls = new ArrayDeque<>();
  private final Deque<RealCall> runningSyncCalls = new ArrayDeque<>();

我们看Dispatcher的executed(this)方法发生了神们事情
很简单,直接将该同步请求加入到同步请求的队列

  /** Used by {@code Call#execute} to signal it is in-flight. */
  synchronized void executed(RealCall call) {
    runningSyncCalls.add(call);
  }

然后执行了getResponseWithInterceptorChain()方法,该方法也简单,首先搞一个拦截器的集合,先把一系列的系统拦截器放进去,然后创建一个chain对象,包括一些超时啊,读写啊一系列的配置...最关键的是这个chain对象

 Response getResponseWithInterceptorChain() throws IOException {
    // Build a full stack of interceptors.
    List<Interceptor> interceptors = new ArrayList<>();
    interceptors.addAll(client.interceptors());
    interceptors.add(retryAndFollowUpInterceptor);
    interceptors.add(new BridgeInterceptor(client.cookieJar()));
    interceptors.add(new CacheInterceptor(client.internalCache()));
    interceptors.add(new ConnectInterceptor(client));
    if (!forWebSocket) {
      interceptors.addAll(client.networkInterceptors());
    }
    interceptors.add(new CallServerInterceptor(forWebSocket));

    Interceptor.Chain chain = new RealInterceptorChain(interceptors, null, null, null, 0,
        originalRequest, this, eventListener, client.connectTimeoutMillis(),
        client.readTimeoutMillis(), client.writeTimeoutMillis());

    return chain.proceed(originalRequest);
  }

来看一下这个chain对象是干什们的 chain.proceed(originalRequest)该方法是关键,RealInterceptorChain是实现了chain接口的一个实现类,
首先做了一堆判断然后就是把拦截器执行一遍,最后返回相应体

 public Response proceed(Request request, StreamAllocation streamAllocation, HttpCodec httpCodec,
      RealConnection connection) throws IOException {
  ......................
    // Call the next interceptor in the chain.
    RealInterceptorChain next = new RealInterceptorChain(interceptors, streamAllocation, httpCodec,
        connection, index + 1, request, call, eventListener, connectTimeout, readTimeout,
        writeTimeout);
    Interceptor interceptor = interceptors.get(index);
    Response response = interceptor.intercept(next);
........................
    return response;
  }

然后继续执行 execute()方法,同步请求直接返回结果,并执行finally中的方法 client.dispatcher().finished(this);
来看一下这个方法中发生了什么事情
首先dispatcher会更具call的类型去调用该方法(把不同的队列传递到该方法)
这个方法做了以下一些事情
1,将call从队列中移除
2如果是异步的话会走一个promoteCalls()方法去搞一些事情
3调用runningCallsCount方法来刷新正在执行的call的数量runningCallsCount,实质是正在执行的异步与同步请求的和
4做一个判断回调一下idleCallback.run()方法.

  private <T> void finished(Deque<T> calls, T call, boolean promoteCalls) {
    int runningCallsCount;
    Runnable idleCallback;
    synchronized (this) {
      if (!calls.remove(call)) throw new AssertionError("Call wasn't in-flight!");
      if (promoteCalls) promoteCalls();
      runningCallsCount = runningCallsCount();
      idleCallback = this.idleCallback;
    }

    if (runningCallsCount == 0 && idleCallback != null) {
      idleCallback.run();
    }
  }

基本一个同步请求就是这样还是很简单的,异步请求小伟复杂一点,回去执行一个promoteCalls()方法
来看该方法高了什么事情

  private void promoteCalls() {
    if (runningAsyncCalls.size() >= maxRequests) return; // Already running max capacity.
    if (readyAsyncCalls.isEmpty()) return; // No ready calls to promote.

    for (Iterator<AsyncCall> i = readyAsyncCalls.iterator(); i.hasNext(); ) {
      AsyncCall call = i.next();

      if (runningCallsForHost(call) < maxRequestsPerHost) {
        i.remove();
        runningAsyncCalls.add(call);
        executorService().execute(call);
      }

      if (runningAsyncCalls.size() >= maxRequests) return; // Reached max capacity.
    }
  }

runningAsyncCalls 正在跑的异步call队列
readyAsyncCalls 准备跑的异步call队列
首先做了一波队列的判断,当正在跑的队列满了,或者准备跑的队列是空的,返回return,然后开始遍历并执行异步请求待执行集合readyAsyncCalls 的请求.

然后来看那异步请求是如何的一个流程

  @Override public void enqueue(Callback responseCallback) {
    synchronized (this) {
      if (executed) throw new IllegalStateException("Already Executed");
      executed = true;
    }
    captureCallStackTrace();
    eventListener.callStart(this);
    client.dispatcher().enqueue(new AsyncCall(responseCallback));
  }

与同步相同,显示执行一堆判断,回调.重点是最后一句 client.dispatcher().enqueue(new AsyncCall(responseCallback));
dispatcher.enqueue代码如下
因为okhttp默认对请求做了64/5的限制,所以进行了一波判断,如果条件符合,就将其加入到正在跑得异步队列runningAsyncCalls,然后交给 executorService()去执行该call,当然如果runningAsyncCalls队列已经满了就交给readyAsyncCalls去等待执行

 synchronized void enqueue(AsyncCall call) {
    if (runningAsyncCalls.size() < maxRequests && runningCallsForHost(call) < maxRequestsPerHost) {
      runningAsyncCalls.add(call);
      executorService().execute(call);
    } else {
      readyAsyncCalls.add(call);
    }
  }

executorService()方法返回一个线程池,

 new ThreadPoolExecutor(0, Integer.MAX_VALUE, 60, TimeUnit.SECONDS,
          new SynchronousQueue<Runnable>(), Util.threadFactory("OkHttp Dispatcher", false));

AsyncCall 本身就是Runnable的子类,这是其父类的run方法,最终会调用 execute();方法去搞事情

  @Override public final void run() {
    String oldName = Thread.currentThread().getName();
    Thread.currentThread().setName(name);
    try {
      execute();
    } finally {
      Thread.currentThread().setName(oldName);
    }
  }

再看AsyncCall 的execute方法干了什么事情
同样调用getResponseWithInterceptorChain()把拦截器执行一遍拿到response ,执行重试重定向等等各种回调,最后任然需要finished这个call,走的方法和同步的差不多,不过传递的是异步的calls集合,并且参数串true.

   @Override protected void execute() {
      boolean signalledCallback = false;
      try {
        Response response = getResponseWithInterceptorChain();
        if (retryAndFollowUpInterceptor.isCanceled()) {
          signalledCallback = true;
          responseCallback.onFailure(RealCall.this, new IOException("Canceled"));
        } else {
          signalledCallback = true;
          responseCallback.onResponse(RealCall.this, response);
        }
      } catch (IOException e) {
        if (signalledCallback) {
          // Do not signal the callback twice!
          Platform.get().log(INFO, "Callback failure for " + toLoggableString(), e);
        } else {
          eventListener.callFailed(RealCall.this, e);
          responseCallback.onFailure(RealCall.this, e);
        }
      } finally {
        client.dispatcher().finished(this);
      }
    }

到此整体一个执行流程大概是这个样子,首先创建okhttpClient对象,在构造中初始化一系列相关的配置参数,然后创建一个Request,request封装一些列该请求需要的配置等等,然后在创建一个call,实则未realcall,当调用call的execute,或者enqueue参数的时候,会将该call添加到相应的队列中,因为异步链接有64-5的限制,所以异步操作会有俩个队列,正在执行队列,等待执行队列,之后会调用chain的方法去执行一个个拦截器,okhttp的一系列机制都是拦截器去实现的,包括缓存机制,重连机制,连接池等等,dispater其实就是整个大流程的控制器,如果是异步请求的话dispater会通过一个线程池来执行该请求,而异步请求的拦截器也是在具体执行该线程的时候去调用,最后根据请求的最终结果来来finshed该请求,实则就是将其从相应的队列中移除掉.

二,拦截器学习
然而上面知识okhttp的一个大体控制执行流程,真真的细节,核心是chain的执行,当dispter执行execute方法时并未发生真真的网络请求,只是将请求call放入请求队列,我认为一下代码才是okhttp的真真核心代码,即dispater将call放入相应的队列之后执行方法,而该端代码最核心的又应该是proceed()方法,okhttp的核心功能(缓存,连接池等)就是中间的虚线部分.

  Response getResponseWithInterceptorChain() throws IOException {
    // Build a full stack of interceptors.
    List<Interceptor> interceptors = new ArrayList<>();

    //此处是用户自定义的拦截器(应用层面的拦截器)
    interceptors.addAll(client.interceptors());
-------------------------
    interceptors.add(retryAndFollowUpInterceptor);
    interceptors.add(new BridgeInterceptor(client.cookieJar()));
    interceptors.add(new CacheInterceptor(client.internalCache()));
    interceptors.add(new ConnectInterceptor(client));
    if (!forWebSocket) {
  //此处是用户自定义的拦截器(网络层面的拦截器)
      interceptors.addAll(client.networkInterceptors());
    }
    interceptors.add(new CallServerInterceptor(forWebSocket));
------------------------------
    Interceptor.Chain chain = new RealInterceptorChain(interceptors, null, null, null, 0,
        originalRequest, this, eventListener, client.connectTimeoutMillis(),
        client.readTimeoutMillis(), client.writeTimeoutMillis());

    return chain.proceed(originalRequest);
  }

okhttp的拦截器有俩种,一下是俩种拦截器的区别,一般应用层面的拦截器用的偏多,比如log,cokies,统一参数,加密等,网络层面的我只能理解可能重定向会使用,其他的不理解,望大佬指点

Application interceptors

不需要去关心中发生的重定向和重试操作。
只会被调用一次,即使这个响应是从缓存中获取的。
只关注最原始的请求,不去关系请求的资源是否发生了改变,我只关注最后的 response 结果而已。
因为是第一个被执行的拦截器,因此它有权决定了是否要调用其他拦截,也就是 Chain.proceed() 方法是否要被执行。
.因为是第一个被执行的拦截器,因此它有可以多次调用 Chain.proceed() 方法,其实也就是相当与重新请求的作用了。


Network Interceptors

因为 NetworkInterceptor 是排在第 6 个拦截器中,因此会经过 RetryAndFollowup 进行失败重试或者重定向,因此可以操作中间的 resposne。
这个我不知道是什么意思,望大神指点。TODO
观察数据在网络中的传输,具体我也不太清除是干嘛的。TODO
因为它排在 ConnectInterceptor 后执行,因此返回执行这个 request 请求的 Connection 连接。

RealInterceptorChain这个类是拦截器的核心执行,该类的主要作用就是把拦截器一个个的执行,通过proceed方法开始执行,并且判断index 的数量来循环的执行拦截器,直到全部执行完毕.

Interceptor.Chain chain = new RealInterceptorChain(interceptors, null, null, null, 0,
        originalRequest, this, eventListener, client.connectTimeoutMillis(),
        client.readTimeoutMillis(), client.writeTimeoutMillis());

    return chain.proceed(originalRequest);
---------------------------------------------------------------------------
  public Response proceed(Request request, StreamAllocation streamAllocation, HttpCodec httpCodec,
      RealConnection connection) throws IOException {
  ...............
    // Call the next interceptor in the chain.
    RealInterceptorChain next = new RealInterceptorChain(interceptors, streamAllocation, httpCodec,
        connection, index + 1, request, call, eventListener, connectTimeout, readTimeout,
        writeTimeout);
    Interceptor interceptor = interceptors.get(index);
    Response response = interceptor.intercept(next);
..............
    return response;
  }

(1)retryAndFollowUpInterceptor 重试重定向机制
该对象在创建call的时候被初始化,并且持有client的对象,关于其相关配置都是在client的build对象中配置
intercept(Chain chain) 该方法是每个拦截器的核心方法,来看retryAndFollowUpInterceptor 的intercept方法做了神们

@Override public Response intercept(Chain chain) throws IOException {
    //该方法获取到了我们最初的那个请求体
    Request request = chain.request();
    //转成RealInterceptorChain,获取到该call对象
    RealInterceptorChain realChain = (RealInterceptorChain) chain;
    Call call = realChain.call();
  //监听器
    EventListener eventListener = realChain.eventListener();
  //创建StreamAllocation对象,把请求地址封装到一个Address对象中
    StreamAllocation streamAllocation = new StreamAllocation(client.connectionPool(),
        createAddress(request.url()), call, eventListener, callStackTrace);
    this.streamAllocation = streamAllocation;
     //重试次数
    int followUpCount = 0;
    Response priorResponse = null;
    //StreamAllocation是用来建立执行HTTP请求所需网络设施的组件
    while (true) {
    //一个安全检查,如果该请求已经被取消,就streamAllocation释放链接
      if (canceled) {
        streamAllocation.release();
        throw new IOException("Canceled");
      }

      Response response;
      boolean releaseConnection = true;
      //接下来会通过RealInterceptorChain的proceed方法处理请求,在请求的过程中将releaseConnection设置为false,请求的时候一旦发生异常,releaseConnection 就设置未true,StreamAllocation就会释放掉链接
      try {
        response = realChain.proceed(request, streamAllocation, null, null);
        releaseConnection = false;
      } catch (RouteException e) {
        // The attempt to connect via a route failed. The request will not have been sent.
        if (!recover(e.getLastConnectException(), streamAllocation, false, request)) {
          throw e.getLastConnectException();
        }
        releaseConnection = false;
        continue;
      } catch (IOException e) {
        // An attempt to communicate with a server failed. The request may have been sent.
        boolean requestSendStarted = !(e instanceof ConnectionShutdownException);
        if (!recover(e, streamAllocation, requestSendStarted, request)) throw e;
        releaseConnection = false;
        continue;
      } finally {
        // We're throwing an unchecked exception. Release any resources.
        if (releaseConnection) {
          streamAllocation.streamFailed(null);
          streamAllocation.release();
        }
      }
    //做了一个空判断
      if (priorResponse != null) {
        response = response.newBuilder()
            .priorResponse(priorResponse.newBuilder()
                    .body(null)
                    .build())
            .build();
      }
      //如果一切顺利,前面的执行没有发生异常,就会走followUpRequest方法去处理重定向
      Request followUp = followUpRequest(response, streamAllocation.route());
      //followUp 为处理重定向之后的结果,如果为空说明该请求不需要进行重定向,直接返回response即可,如果不为空说明是需要进行重定向的,继续往下走
      if (followUp == null) {
        if (!forWebSocket) {
          streamAllocation.release();
        }
        return response;
      }
      //回收资源
      closeQuietly(response.body());
    //如果重试次数达到最大
      if (++followUpCount > MAX_FOLLOW_UPS) {
        streamAllocation.release();
        throw new ProtocolException("Too many follow-up requests: " + followUpCount);
      }
      //安全检查
      if (followUp.body() instanceof UnrepeatableRequestBody) {
        streamAllocation.release();
        throw new HttpRetryException("Cannot retry streamed HTTP body", response.code());
      }
      //判断是否为同一个请求,一般重定向的时候url会发生变化,不视为同一个请求,所以释放streamAllocation,并重新创建一个streamAllocation进行请求
      if (!sameConnection(response, followUp.url())) {
        streamAllocation.release();
        streamAllocation = new StreamAllocation(client.connectionPool(),
            createAddress(followUp.url()), call, eventListener, callStackTrace);
        this.streamAllocation = streamAllocation;
      } else if (streamAllocation.codec() != null) {
        throw new IllegalStateException("Closing the body of " + response
            + " didn't close its backing stream. Bad interceptor?");
      }
    //更新请求提与返回体
      request = followUp;
      priorResponse = response;
    }
  }

总体来说就是在该拦截器中会创建请求需要的连接池,开启循环去执行请求,调用chain去把其他的拦截器 执行一遍获取到返回体,真真的请求不再此地发生,然后更具该返回提去判断是否需要去执行重定向,如果不需要,直接返回该返回体,如果需要就需要重新请求,重新执行该循环中的流程,知道最大次数用完或者不再需要重定向的时候再返回相应体.该拦截器不发生网络请求,只进行相关的重试和重定向的策略执行.

(2)BridgeInterceptor
然后我们再来看BridgeInterceptor这个拦截器,这个拦截器其实简单,完善了一系列的请求头

@Override public Response intercept(Chain chain) throws IOException {
    Request userRequest = chain.request();
    Request.Builder requestBuilder = userRequest.newBuilder();

    RequestBody body = userRequest.body();
    if (body != null) {
      MediaType contentType = body.contentType();
      if (contentType != null) {
        requestBuilder.header("Content-Type", contentType.toString());
      }

      long contentLength = body.contentLength();
      if (contentLength != -1) {
        requestBuilder.header("Content-Length", Long.toString(contentLength));
        requestBuilder.removeHeader("Transfer-Encoding");
      } else {
        requestBuilder.header("Transfer-Encoding", "chunked");
        requestBuilder.removeHeader("Content-Length");
      }
    }

    if (userRequest.header("Host") == null) {
      requestBuilder.header("Host", hostHeader(userRequest.url(), false));
    }

    if (userRequest.header("Connection") == null) {
      requestBuilder.header("Connection", "Keep-Alive");
    }

    // If we add an "Accept-Encoding: gzip" header field we're responsible for also decompressing
    // the transfer stream.
    boolean transparentGzip = false;
    if (userRequest.header("Accept-Encoding") == null && userRequest.header("Range") == null) {
      transparentGzip = true;
      requestBuilder.header("Accept-Encoding", "gzip");
    }

    List<Cookie> cookies = cookieJar.loadForRequest(userRequest.url());
    if (!cookies.isEmpty()) {
      requestBuilder.header("Cookie", cookieHeader(cookies));
    }

    if (userRequest.header("User-Agent") == null) {
      requestBuilder.header("User-Agent", Version.userAgent());
    }

    Response networkResponse = chain.proceed(requestBuilder.build());

    HttpHeaders.receiveHeaders(cookieJar, userRequest.url(), networkResponse.headers());

    Response.Builder responseBuilder = networkResponse.newBuilder()
        .request(userRequest);

    if (transparentGzip
        && "gzip".equalsIgnoreCase(networkResponse.header("Content-Encoding"))
        && HttpHeaders.hasBody(networkResponse)) {
      GzipSource responseBody = new GzipSource(networkResponse.body().source());
      Headers strippedHeaders = networkResponse.headers().newBuilder()
          .removeAll("Content-Encoding")
          .removeAll("Content-Length")
          .build();
      responseBuilder.headers(strippedHeaders);
      String contentType = networkResponse.header("Content-Type");
      responseBuilder.body(new RealResponseBody(contentType, -1L, Okio.buffer(responseBody)));
    }

    return responseBuilder.build();
  }

(3)CacheInterceptor
该拦截器也是okhttp的一个核心机制,做了很精妙的缓存策略,主要代码如下:

  @Override public Response intercept(Chain chain) throws IOException {
  //首先获取缓存的相应体
<1>
    Response cacheCandidate = cache != null
        ? cache.get(chain.request())
        : null;

    long now = System.currentTimeMillis();
<2>
    CacheStrategy strategy = new CacheStrategy.Factory(now, chain.request(), cacheCandidate).get();
    Request networkRequest = strategy.networkRequest;
    Response cacheResponse = strategy.cacheResponse;

    if (cache != null) {
      cache.trackResponse(strategy);
    }

    if (cacheCandidate != null && cacheResponse == null) {
      closeQuietly(cacheCandidate.body()); // The cache candidate wasn't applicable. Close it.
    }
<3>
    // If we're forbidden from using the network and the cache is insufficient, fail.
    if (networkRequest == null && cacheResponse == null) {
      return new Response.Builder()
          .request(chain.request())
          .protocol(Protocol.HTTP_1_1)
          .code(504)
          .message("Unsatisfiable Request (only-if-cached)")
          .body(Util.EMPTY_RESPONSE)
          .sentRequestAtMillis(-1L)
          .receivedResponseAtMillis(System.currentTimeMillis())
          .build();
    }
<4>
    // If we don't need the network, we're done.
    if (networkRequest == null) {
      return cacheResponse.newBuilder()
          .cacheResponse(stripBody(cacheResponse))
          .build();
    }
  <5>
    Response networkResponse = null;
    try {
      networkResponse = chain.proceed(networkRequest);
    } finally {
      // If we're crashing on I/O or otherwise, don't leak the cache body.
      if (networkResponse == null && cacheCandidate != null) {
        closeQuietly(cacheCandidate.body());
      }
    }
  <6>
    // If we have a cache response too, then we're doing a conditional get.
    if (cacheResponse != null) {
      if (networkResponse.code() == HTTP_NOT_MODIFIED) {
        Response response = cacheResponse.newBuilder()
            .headers(combine(cacheResponse.headers(), networkResponse.headers()))
            .sentRequestAtMillis(networkResponse.sentRequestAtMillis())
            .receivedResponseAtMillis(networkResponse.receivedResponseAtMillis())
            .cacheResponse(stripBody(cacheResponse))
            .networkResponse(stripBody(networkResponse))
            .build();
        networkResponse.body().close();

        // Update the cache after combining headers but before stripping the
        // Content-Encoding header (as performed by initContentStream()).
        cache.trackConditionalCacheHit();
        cache.update(cacheResponse, response);
        return response;
      } else {
        closeQuietly(cacheResponse.body());
      }
    }
<7>
    Response response = networkResponse.newBuilder()
        .cacheResponse(stripBody(cacheResponse))
        .networkResponse(stripBody(networkResponse))
        .build();

<8>
    if (cache != null) {
      if (HttpHeaders.hasBody(response) && CacheStrategy.isCacheable(response, networkRequest)) {
        // Offer this request to the cache.
        CacheRequest cacheRequest = cache.put(response);
        return cacheWritingResponse(cacheRequest, response);
      }

      if (HttpMethod.invalidatesCache(networkRequest.method())) {
        try {
          cache.remove(networkRequest);
        } catch (IOException ignored) {
          // The cache cannot be written.
        }
      }
    }
  <9>
    return response;
  }

缓存策略本非okhttp的功能,知识对http的缓存机制用拦截器的模式做了实现
1,首先会像本地取一波缓存
2,CacheStrategy类是一个缓存策略的类,该类更具本次请求的requset以及本地的缓存做一系列的处理,最后生成一个缓存的策略出来(包括各种headers的判断,tags,lastTieme等等)
3,如果禁用网络请求,并且缓存失效,那么会直接返回一个空的resposne;
4,如果禁用网络请求,且有缓存,直接返回缓存,
5,剩下的情况就是需要去网络请求,所以执行下一个拦截器去网络请求;
6,如果本地有缓存,并且返回码为304的时候,我们可以直接复用缓存了,并且更新本地的缓存;
7,如果响应吗不为304,那么说明缓存失效了或者没有缓存或者不使用缓存;
8,根据用户的缓存配置实现http缓存;
9,返回相应体;
整体就是这么一个缓存的流程,

(4)ConnectInterceptor
这个拦截器代码很少,但也很重要

@Override public Response intercept(Chain chain) throws IOException {
    RealInterceptorChain realChain = (RealInterceptorChain) chain;
    Request request = realChain.request();
    StreamAllocation streamAllocation = realChain.streamAllocation();

    // We need the network to satisfy this request. Possibly for validating a conditional GET.
    boolean doExtensiveHealthChecks = !request.method().equals("GET");
    HttpCodec httpCodec = streamAllocation.newStream(client, chain, doExtensiveHealthChecks);
    RealConnection connection = streamAllocation.connection();

    return realChain.proceed(request, streamAllocation, httpCodec, connection);
  }

这一步开始正真的开始链接网络了,首先获取到在重定向拦截器中创建的stream,然后大部分的链接工作都交给了stream去完成了;
下面是stream的newStream()方法,
<1> 复用或新建一个Connection对象
<2>新建流,即是创建HttpCodec对象并返回给调用处

public HttpCodec newStream(OkHttpClient client, Interceptor.Chain chain, boolean doExtensiveHealthChecks) {
    int connectTimeout = chain.connectTimeoutMillis();
    int readTimeout = chain.readTimeoutMillis();
    int writeTimeout = chain.writeTimeoutMillis();
    boolean connectionRetryEnabled = client.retryOnConnectionFailure();
    
    try {
<1>
      RealConnection resultConnection = findHealthyConnection(connectTimeout, readTimeout,
          writeTimeout, connectionRetryEnabled, doExtensiveHealthChecks);
      HttpCodec resultCodec = resultConnection.newCodec(client, chain, this);

      synchronized (connectionPool) {
        codec = resultCodec;
        return resultCodec;
      }
    } catch (IOException e) {
      throw new RouteException(e);
    }
  }

stream是如何复用链接的:
下面的代码中开启一个循环不停的调用findConnection方法去获取一个Connection对象,

  private RealConnection findHealthyConnection(int connectTimeout, int readTimeout,
      int writeTimeout, int pingIntervalMillis, boolean connectionRetryEnabled,
      boolean doExtensiveHealthChecks) throws IOException {
    while (true) {
      RealConnection candidate = findConnection(connectTimeout, readTimeout, writeTimeout,
          pingIntervalMillis, connectionRetryEnabled);

      // If this is a brand new connection, we can skip the extensive health checks.
      synchronized (connectionPool) {
        if (candidate.successCount == 0) {
          return candidate;
        }
      }

      // Do a (potentially slow) check to confirm that the pooled connection is still good. If it
      // isn't, take it out of the pool and start again.
      if (!candidate.isHealthy(doExtensiveHealthChecks)) {
        noNewStreams();
        continue;
      }

      return candidate;
    }
  }

那么findConnection方法做了些神们东西
这个方法很长很长,它具体做了以下几点事情
<1>. 首先判断当前StreamAllocation对象是否已经有一个Connection对象了(这种情况会在请求重定向,且重定向的Request的host、port、scheme与之前一致时出现)
<2>. 如果1不满足,则尝试从ConnectionPool中获取一个
<3>. 如果2中没有获取到,则遍历所有路由路径,尝试从再次从ConnectionPool中寻找可复用的连接,找到则返回
<4>. 如果3中没有找到可复用的连接,则尝试新建一个,进行三次握手/TLS握手(如果需要)
<5>.把新建的连接放入ConnectionPool中
<6>.返回结果
所以总体就是这么一个链接的复用流程;

  private RealConnection findConnection(int connectTimeout, int readTimeout, int writeTimeout,
      int pingIntervalMillis, boolean connectionRetryEnabled) throws IOException {
    boolean foundPooledConnection = false;
    RealConnection result = null;
    Route selectedRoute = null;
    Connection releasedConnection;
    Socket toClose;
    synchronized (connectionPool) {
      if (released) throw new IllegalStateException("released");
      if (codec != null) throw new IllegalStateException("codec != null");
      if (canceled) throw new IOException("Canceled");

      // Attempt to use an already-allocated connection. We need to be careful here because our
      // already-allocated connection may have been restricted from creating new streams.
      releasedConnection = this.connection;
      toClose = releaseIfNoNewStreams();
      if (this.connection != null) {
        // We had an already-allocated connection and it's good.
        result = this.connection;
        releasedConnection = null;
      }
      if (!reportedAcquired) {
        // If the connection was never reported acquired, don't report it as released!
        releasedConnection = null;
      }

      if (result == null) {
        // Attempt to get a connection from the pool.
        Internal.instance.get(connectionPool, address, this, null);
        if (connection != null) {
          foundPooledConnection = true;
          result = connection;
        } else {
          selectedRoute = route;
        }
      }
    }
    closeQuietly(toClose);

    if (releasedConnection != null) {
      eventListener.connectionReleased(call, releasedConnection);
    }
    if (foundPooledConnection) {
      eventListener.connectionAcquired(call, result);
    }
    if (result != null) {
      // If we found an already-allocated or pooled connection, we're done.
      return result;
    }

    // If we need a route selection, make one. This is a blocking operation.
    boolean newRouteSelection = false;
    if (selectedRoute == null && (routeSelection == null || !routeSelection.hasNext())) {
      newRouteSelection = true;
      routeSelection = routeSelector.next();
    }

    synchronized (connectionPool) {
      if (canceled) throw new IOException("Canceled");

      if (newRouteSelection) {
        // Now that we have a set of IP addresses, make another attempt at getting a connection from
        // the pool. This could match due to connection coalescing.
        List<Route> routes = routeSelection.getAll();
        for (int i = 0, size = routes.size(); i < size; i++) {
          Route route = routes.get(i);
          Internal.instance.get(connectionPool, address, this, route);
          if (connection != null) {
            foundPooledConnection = true;
            result = connection;
            this.route = route;
            break;
          }
        }
      }

      if (!foundPooledConnection) {
        if (selectedRoute == null) {
          selectedRoute = routeSelection.next();
        }

        // Create a connection and assign it to this allocation immediately. This makes it possible
        // for an asynchronous cancel() to interrupt the handshake we're about to do.
        route = selectedRoute;
        refusedStreamCount = 0;
        result = new RealConnection(connectionPool, selectedRoute);
        acquire(result, false);
      }
    }

    // If we found a pooled connection on the 2nd time around, we're done.
    if (foundPooledConnection) {
      eventListener.connectionAcquired(call, result);
      return result;
    }

    // Do TCP + TLS handshakes. This is a blocking operation.
    result.connect(connectTimeout, readTimeout, writeTimeout, pingIntervalMillis,
        connectionRetryEnabled, call, eventListener);
    routeDatabase().connected(result.route());

    Socket socket = null;
    synchronized (connectionPool) {
      reportedAcquired = true;

      // Pool the connection.
      Internal.instance.put(connectionPool, result);

      // If another multiplexed connection to the same address was created concurrently, then
      // release this connection and acquire that one.
      if (result.isMultiplexed()) {
        socket = Internal.instance.deduplicate(connectionPool, address, this);
        result = connection;
      }
    }
    closeQuietly(socket);

    eventListener.connectionAcquired(call, result);
    return result;
  }

以上是创建复用或者创建一个链接并拿到一个链接对象,下一步就搞新建一个Io对象HttpCodec,HttpCodec是依赖okio的一个io组件库,这里只是创建了,具体还没有调用

<5>CallServerInterceptor
CallServerInterceptor是正真的网络请求拦截器
这个拦截方法主要步骤:

<1>,获取几个前面已经创建的重要类;
<2>,先向sink(OutputStream)中写头信息(sink, 在创建连接时候已经创建好);
<3>判断是否有请求体,如有,走4,5的操作,没有直接到6;
<4>如果头部添加了"100-continue", 相对于一次见到的握手操作,只有拿到服务的结果再继续;
<5>当“100-continue”成功或者不需要这个简单握手的,写入请求实体;
<6>finishRequest( 实际是调用了 sink.flush(), 来刷数据 )
<7>读取头部信息(通过source(InputStream), 读取头部信息,状态码等)
<8>构建Response, 写入原请求,握手情况,请求时间,得到的结果时间
<9>通过Response 状态码判断以及是否webSocket判断,是否返回一个空的body, 或者读取Body信息(通过 source(InputStream) 读取);
<10>读取到请求时的连接close ,或者服务器返回的 close, 进行断开操作;
<11>对于204,205的特殊状态码进行处理。


  @Override public Response intercept(Chain chain) throws IOException {
<1>
    RealInterceptorChain realChain = (RealInterceptorChain) chain;
    HttpCodec httpCodec = realChain.httpStream();
    StreamAllocation streamAllocation = realChain.streamAllocation();
    RealConnection connection = (RealConnection) realChain.connection();
    Request request = realChain.request();

    long sentRequestMillis = System.currentTimeMillis();

    realChain.eventListener().requestHeadersStart(realChain.call());
<2>
    httpCodec.writeRequestHeaders(request);
    realChain.eventListener().requestHeadersEnd(realChain.call(), request);
<3>
    Response.Builder responseBuilder = null;
    if (HttpMethod.permitsRequestBody(request.method()) && request.body() != null) {
      // If there's a "Expect: 100-continue" header on the request, wait for a "HTTP/1.1 100
      // Continue" response before transmitting the request body. If we don't get that, return
      // what we did get (such as a 4xx response) without ever transmitting the request body.
<4>
      if ("100-continue".equalsIgnoreCase(request.header("Expect"))) {
        httpCodec.flushRequest();
        realChain.eventListener().responseHeadersStart(realChain.call());
        responseBuilder = httpCodec.readResponseHeaders(true);
      }
<5>
      if (responseBuilder == null) {
        // Write the request body if the "Expect: 100-continue" expectation was met.
        realChain.eventListener().requestBodyStart(realChain.call());
        long contentLength = request.body().contentLength();
        CountingSink requestBodyOut =
            new CountingSink(httpCodec.createRequestBody(request, contentLength));
        BufferedSink bufferedRequestBody = Okio.buffer(requestBodyOut);

        request.body().writeTo(bufferedRequestBody);
        bufferedRequestBody.close();
        realChain.eventListener()
            .requestBodyEnd(realChain.call(), requestBodyOut.successfulCount);
      } else if (!connection.isMultiplexed()) {
        // If the "Expect: 100-continue" expectation wasn't met, prevent the HTTP/1 connection
        // from being reused. Otherwise we're still obligated to transmit the request body to
        // leave the connection in a consistent state.
        streamAllocation.noNewStreams();
      }
    }
<6>
    httpCodec.finishRequest();
<7>
    if (responseBuilder == null) {
      realChain.eventListener().responseHeadersStart(realChain.call());
      responseBuilder = httpCodec.readResponseHeaders(false);
    }
<8>
    Response response = responseBuilder
        .request(request)
        .handshake(streamAllocation.connection().handshake())
        .sentRequestAtMillis(sentRequestMillis)
        .receivedResponseAtMillis(System.currentTimeMillis())
        .build();

    int code = response.code();
    if (code == 100) {
      // server sent a 100-continue even though we did not request one.
      // try again to read the actual response
      responseBuilder = httpCodec.readResponseHeaders(false);

      response = responseBuilder
              .request(request)
              .handshake(streamAllocation.connection().handshake())
              .sentRequestAtMillis(sentRequestMillis)
              .receivedResponseAtMillis(System.currentTimeMillis())
              .build();

      code = response.code();
    }

    realChain.eventListener()
            .responseHeadersEnd(realChain.call(), response);
<9>
    if (forWebSocket && code == 101) {
      // Connection is upgrading, but we need to ensure interceptors see a non-null response body.
      response = response.newBuilder()
          .body(Util.EMPTY_RESPONSE)
          .build();
    } else {
      response = response.newBuilder()
          .body(httpCodec.openResponseBody(response))
          .build();
    }
<10>
    if ("close".equalsIgnoreCase(response.request().header("Connection"))
        || "close".equalsIgnoreCase(response.header("Connection"))) {
      streamAllocation.noNewStreams();
    }
<11>
    if ((code == 204 || code == 205) && response.body().contentLength() > 0) {
      throw new ProtocolException(
          "HTTP " + code + " had non-zero Content-Length: " + response.body().contentLength());
    }

    return response;
  }

经过这最后一个拦截器的处理,一个完整的网络请求就完成了,
最后上一张经典的流程图


okhttp.png
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,254评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,875评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,682评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,896评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,015评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,152评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,208评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,962评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,388评论 1 304
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,700评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,867评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,551评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,186评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,901评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,142评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,689评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,757评论 2 351