WEBRTC基本概念

1. AIMD

AIMD英文全称:Additive Increase Multiplicative Decrease。TCP/IP模型中,属于[运输层],为了解决[拥塞控制]的一个方法,即:加性增,乘性减,或者叫做“和式增加,积式减少”。

示例:
当TCP发送方感受到端到端路径无拥塞时就线性的增加其发送速度,当察觉到路径拥塞时就乘性减小其发送速度。

TCP[拥塞控制]协议的线性增长阶段被称为避免拥塞。

当TCP发送端收到ACK,并且没有检测到丢包事件时,[拥塞窗口]加1(即,CongWin++);当TCP发送端检测到丢包事件后,拥塞窗口除以2(即,CongWin=[CongWin/2]; 也就是取整的意思)。

  aimd controller是TCP底层的码率调节概念,但是WebRTC并没有完全照搬TCP的机制,而是设计了套自己的算法。
  如果处于Incr状态,增加码率的方式分为两种:一种是通信会话刚刚开始,相当于TCP慢启动,它会进行一个倍数增加,当前使用的码率乘以系数,系数是1.08;如果是持续在通信状态,其增加的码率值是当前码率在一个RTT时间周期所能传输的数据速率。
  如果处于Decrease状态,递减原则是:过去500ms时间窗内的最大acked bitrate乘上系数0.85,acked bitrate通过feedback反馈过来的报文序号查找本地发送列表就可以得到。
aimd根据上面的规则最终计算到的码率就是基于延迟拥塞评估到的bwe bitrate码率。

2. 码率

实时码率Rr

发送端码率As

WebRTC在发送端收到来自接收端的RTCP RR报文,根据其Report Block中携带的丢包率信息,动态调整发送端码率As。

远端估计最大码率Ar

基于延迟的码率控制运行在接收端,WebRTC根据数据包到达的时间延迟,通过到达时间滤波器,估算出网络延迟m(t),然后经过过载检测器判断当前网络的拥塞状况,最后在码率控制器根据规则计算出远端估计最大码率Ar。然后,通过RTCP REMB报文返回Ar等到发送端。

目标码率A

发送端综合As、Ar和预配置的上下限,计算出最终的目标码率A,该码率会作用到Encoder、RTP和PacedSender等模块,控制发送端的码率。

  GCC算法充分考虑丢包率和延迟对码率的影响,在实时通讯应用(如视频会议)中能够发挥良好效果。然而,在某些特定应用场景下(比如实时在线编辑),GCC算法的表现不太让人满意,主要体现在它应对峰值流量的能力上,具体表现在:
1)算法一开始基于Increase状态增加码率,当检测到Decrease状态时调用Ar[t(i)] = Alpha * Rr[t(i)],这个时候实时码率Rr(ti)可能远小于Ar[t(i-1)],这样在后续过程中Ar处于较低水平;此时若有视频关键帧冲击,则数据包大量在PacedSender的队列中排队,造成较大排队延迟。
2)基于1)中论述的情况,码率估计模块反馈给Codec的编码码率很低,但编码器需要编码关键帧时,内部的码率控制模块控制出的最小码率仍然大于反馈码率。这两种情况都会造成较大的发送端排队延迟,进而在接收端造成较大的JitterBuffer延迟,最终导致端到端延迟到达500ms的水平,这在实时在线编辑应用中是无法容忍的。
基于此,Google官方从WebRTC M55开始引入新的码率估计算法,把所有码率计算模块都移动到发送端,并采用全新的Trendline滤波器,基于码率探测机制快速准确地估计出实时码率。

3. 包组

WebRTC在评估延迟差的时候不是对每个包进行估算,而是采用了包组间进行延迟评估,这符合视频传输(视频帧是需要切分成多个UDP包)的特点,也减少了频繁计算带来的误差。那么什么是包组呢?就是距包组中第一个包的发送时刻t0小于5毫秒发送的所有的包成为一组,第一个超过5毫秒的包作为下一个包组第一个包。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,110评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,443评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,474评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,881评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,902评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,698评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,418评论 3 419
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,332评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,796评论 1 316
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,968评论 3 337
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,110评论 1 351
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,792评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,455评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,003评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,130评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,348评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,047评论 2 355

推荐阅读更多精彩内容