谷歌大脑最新技术:将神经网络提炼成软决策树!

姓名:付盼龙

转载至全球人工智能

【嵌牛导读】经实践证明,深度神经网络是执行分类任务的一种非常有效的方法。当输入数据是高维度,输入输出之间关系异常复杂,标注训练样本数量非常大的时候,深度神经网络的性能表现是非常好的。但是很难解释为什么学习网络在一个特定的测试用例做出特定的分类决策。这主要是由于它们对于分布式分层表示的依赖。如果我们能够充分利用从神经网络所获得的知识,并在一个依赖分层决策的模型中表达相同的知识,那么解释一个特定的决策将会容易得多。我们描述了一种使用已训练的神经网络创建一种软决策树的方法,该方法的泛化效果要比直接从训练数据中得以学习要好得多。

【嵌牛提问】神经网络如何变为决策树?

【嵌牛鼻子】神经网络 决策树

【嵌牛正文】

深度神经网络的优秀泛化能力取决于它们在隐藏层中分布式表示的使用,但这些表示难以理解。对于第一个隐藏层,我们可以理解是什么原因导致了一个单元的激活,而对于最后一个隐藏层,我们可以理解激活一个单元所产生的效果,但是对于其他隐藏层,理解一个特征激活的产生原因和造成的影响要困难得多,尤其是就输入和输出变量这些有意义的变量而言。与此同时,隐藏层中的单元将输入向量的表示分解为一组特征激活,通过这种方式,激活特征的组合效果能够在下一隐藏层中产生适当的分布式表示。这使得我们很难独立性地理解任何特定特征激活的函数作用,因为它的边际效应依赖于同一层中所有其他单元的影响。

图片发自简书App
这个图显示了一个软二进制决策树,其中有一个内部节点和两个叶节点。

深度网络通过对训练数据的输入和输出之间关系中的大量弱统计规律进行建模从而做出可靠的决策,基于这一事实,上述困难进一步加深,而且,神经网络中没有任何东西可以从训练集的抽样特性所产生的伪规律中区分这些弱规律,即数据的真实属性。面对所有这些困难,放弃理解深度神经网络是如何通过理解单一隐藏单元所作所为来进行一个分类决策的想法,似乎是明智的。

相比之下,决策树是如何进行任意特定的分类就很容易解释了,因为这取决于一个相对较短的决策序列,且每个决策都直接基于输入数据。然而,决策树通常不会像神经网络那样泛化。与神经网络中的隐藏单元不同的是,决策树较低级别的典型节点仅被一小部分训练数据所使用,因此决策树的较低部分倾向于过度拟合,除非与树的深度相比,训练集的大小大的程度能够呈现出指数级。

图片发自简书App
图片发自简书App
这是一个在MNIST上进行训练的深度为4的软决策树的可视化图。内部节点的图像是已学习过的过滤器,而叶部的图像是覆盖所有类的学习概率分布的可视化。而最后对每一个叶部的,以及对每条边缘的可能分类都已有注释。如果我们以最右边的内部结点为例,可以看到,在树的那个层级上,潜在的分类只有3或8,因此,已学习的过滤器只是简单地学习该如何区分这两个数字。结果是一个在寻找这个两个区域存在的过滤器,会连接到3的末端,从而生成8。

我们提出了一种全新的解决泛化和可解释性之间矛盾的方法。我们不是试图了解深度神经网络是如何做出决策的,而是使用深度神经网络来训练一个决策树,它会对神经网络所发现的输入输出函数进行模仿,但是以一种完全不同的方式运行。如果有大量未标注的数据,则可以使用神经网络来创建一个更大的标注数据集用以训练决策树,从而克服决策树的统计无效性问题。即使未标注的数据不可用,也有可能利用生成建模方面所取得的最新进展,从一个类似数据分布的分布中生成合成的未标注数据。在不使用未标注的数据的情况下,我们可以通过使用一种叫做提炼(distillation)的技术以及一种能够做软决策的决策,将神经网络的泛化能力迁移到决策树中。

图片发自简书App
这是一个在Connect4数据集上进行训练的软决策树的前两层的可视化视图。通过检查学习过滤器,我们可以看到,该游戏可以分为两个不同的子类型游戏,其中一个游戏中,玩家已经把金币放在板的边缘,而另一个游戏中,玩家将金币放置在板的中心。

在测试期间,我们使用决策树作为我们的模型。它的执行效果可能会比神经网络稍微差一点,但它通常会快得多,而且现在我们有了一个模型,可以直接对其决策进行解释和参与其中。现在,我们首先对我们所使用的决策树的类型进行描述。我们之所以做出这个选择是为了便于将从深度神经网络获得的知识简化到决策树中。

我们已经描述了一种使用已训练的神经网络,以软决策树的形式创建一个更具可解释性的模型的方法,其中,决策树是通过随机梯度下降进行训练的,利用神经网络的预测以便提供更多的信息目标。软决策树使用已学习的过滤器做出一个基于输入样本的分层决策,最终选择一个特定的覆盖所有类的静态概率分布作为其输出。这种软决策树的泛化能力要比直接在数据上进行训练好得多,但性能表现要比用来提供对其进行训练的软目标的神经网络差得多。因此,如果能够解释一个模型为什么要以特定方式对特定测试用例进行分类是至关重要的话,那么我们就可以使用软决策树,但是,如果我们使用深度神经网络来改进这个具有可解释性模型的训练性能的话,是非常有价值的。

原文:https://arxiv.org/pdf/1711.09784.pdf

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,875评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,569评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,475评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,459评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,537评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,563评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,580评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,326评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,773评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,086评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,252评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,921评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,566评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,190评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,435评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,129评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,125评论 2 352

推荐阅读更多精彩内容

  • 今天,我在卫生间里洗漱完,就走出卫生间,并随手把灯关上了。突然,妈妈大叫一声:“你在干什么?”我说:“我要...
    永恒夜空中最亮的星阅读 103评论 0 1
  • 朦胧的梦境中,我和潘清美手挽着手,欢声笑语地走着,她的手挽着我的臂弯,头轻轻靠着我的肩膀,轻喃着自己玫瑰色的梦……...
    知遥阅读 1,809评论 5 7
  • 人们常常会说,越难过,越要笑,小时候的我们不会懂得它的真正含义,只会遍遍的疑惑,“难过,不是要大声哭泣才能够得到真...
    阿俊xi阅读 1,197评论 0 1
  • 打开文本编辑器(可以使用 vi/vim 命令来创建文件),新建一个文件 test.sh,扩展名为 sh(sh代表s...
    孤月环舟阅读 256评论 0 0
  • 珠宝首饰,有的适合随时佩戴,不仅有安神静眠的效用,也能缓解一些身体的“亚健康”状态。但是,有些珠宝千万别再睡觉的时...
    珠宝大课堂阅读 1,000评论 0 0