tensorflow--first

y = w*x+b

import tensorflow as tf
import numpy as np
#去掉警告信息
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

#create data
x_data = np.random.rand(100).astype(np.float32)
y_data = x_data*0.1+0.3

# create tensorflow structure start
Weights = tf.Variable(tf.random_uniform([1],-1.0,1.0))
biases = tf.Variable(tf.zeros([1]))
y= Weights*x_data +biases
#计算平均误差
loss =tf.reduce_mean(tf.square(y-y_data))
#传播误差
optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss)
#训练
init = tf.global_variables_initializer()

sess = tf.Session()
sess.run(init)

for step in range(201):
    sess.run(train)
    if step %20 ==0:
        print(step,sess.run(Weights),sess.run(biases))


拓展为二维

y = w1x1+w2x2+b

import tensorflow as tf
import numpy as np

import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

#create data
x_data = np.random.rand(100).astype(np.float32)
x1_data = np.random.rand(100).astype(np.float32)
# y_data = x_data*0.1+0.3

y_data = 10*x_data + 20*x1_data + 100


# create tensorflow structure start
Weights = tf.Variable(tf.random_uniform([1],-1.0,1.0))
Weights1 = tf.Variable(tf.random_uniform([1], -1.0, 1.0))
biases = tf.Variable(tf.zeros([1]))
y= Weights*x_data + Weights1 * x1_data+biases
#计算平均误差
loss =tf.reduce_mean(tf.square(y-y_data))
#传播误差
optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss)
#训练
init = tf.global_variables_initializer()

sess = tf.Session()
sess.run(init)

for step in range(201):
    sess.run(train)
    if step %20 ==0:
        print(step,sess.run(Weights), sess.run(Weights1),sess.run(biases))

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

相关阅读更多精彩内容

友情链接更多精彩内容