数据分析—RFM分析

RFM分析

  • RFM 是指根据客户活跃程度和交易金额贡献,进行客户价值细分的一种方法;


  • RFM 模型


    RFM 模型
  • 分析过程


  • 分析前提


思路

  • 将数值型转换为时间格式(计算出最近交易时间间隔)
  • 分组分析出 R、F、M的值
  • 按权重计算得分
  • 利用quantile函数给用户分级
#原数据
OrderID,CustomerID,DealDateTime,Sales
 4529,   34858,    2014-05-14   ,807
#转换为时间格式
data['DealDateTime'] = pandas.to_datetime(
    data.DealDateTime, 
    format='%Y/%m/%d'
)

#计算日期至今有多少天
data['DateDiff'] = pandas.to_datetime(
    'today'
) - data['DealDateTime']

#时间抽取属性为天
data['DateDiff'] = data['DateDiff'].dt.days

#顾客最近的交易日期间距
R_Agg = data.groupby(
    by=['CustomerID']
)['DateDiff'].agg({
    'RecencyAgg': numpy.min
})

#顾客交易频率统计
F_Agg = data.groupby(
    by=['CustomerID']
)['OrderID'].agg({
    'FrequencyAgg': numpy.size
})

#交易金额汇总
M_Agg = data.groupby(
    by=['CustomerID']
)['Sales'].agg({
    'MonetaryAgg': numpy.sum
})

#对R F M结果进行整合
aggData = R_Agg.join(F_Agg).join(M_Agg)

#设计分组  分组的数据为得分
bins = aggData.RecencyAgg.quantile(
    q=[0, 0.2, 0.4, 0.6, 0.8, 1],
    interpolation='nearest'
)
bins[0] = 0  #避免最小值不闭合的错误 把最小值设置为0
labels = [5, 4, 3, 2, 1]
#用cut方法得分计算
R_S = pandas.cut(
    aggData.RecencyAgg, 
    bins, labels=labels
)

bins = aggData.FrequencyAgg.quantile(
    q=[0, 0.2, 0.4, 0.6, 0.8, 1],
    interpolation='nearest'
)
bins[0] = 0;
labels = [1, 2, 3, 4, 5];
F_S = pandas.cut(
    aggData.FrequencyAgg, 
    bins, labels=labels
)

bins = aggData.MonetaryAgg.quantile(
    q=[0, 0.2, 0.4, 0.6, 0.8, 1],
    interpolation='nearest'
)
bins[0] = 0
labels = [1, 2, 3, 4, 5]
M_S = pandas.cut(
    aggData.MonetaryAgg, 
    bins, labels=labels
)

#添加分组列
aggData['R_S']=R_S
aggData['F_S']=F_S
aggData['M_S']=M_S

#计算得分权重
aggData['RFM'] = 100*R_S.astype(int) + 10*F_S.astype(int) + 1*M_S.astype(int)

#分出用户类型
bins = aggData.RFM.quantile(
    q=[
        0, 0.125, 0.25, 0.375, 0.5, 
        0.625, 0.75, 0.875, 1
    ],
    interpolation='nearest'
)
bins[0] = 0
labels = [1, 2, 3, 4, 5, 6, 7, 8]
aggData['level'] = pandas.cut(
    aggData.RFM, 
    bins, labels=labels
)

#原行索引作为一列保留,列名为index
aggData = aggData.reset_index()

aggData.sort(
    ['level', 'RFM'], 
    ascending=[1, 1]
)

aggData.groupby(
    by=['level']
)['CustomerID'].agg({
    'size':numpy.size
})
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容

  • 基本统计 基本统计分析,也叫描述性统计分析,用来概括事物整体状况以及事物间联系(即事物的基本特征),以发现其内在规...
    WesleyLien阅读 2,146评论 0 1
  • 通过RFM方法,我们根据用户的属性数据分析,对用户进行了归类。在推送、转化等很多过程中,可以更加精准化,不至于出现...
    wujingwin阅读 6,508评论 0 6
  • 赏析评价 《石门颂》刻字书写较随便,不刻意求工而流露出恣肆奔放、天真自然的情趣,为后世书家所珍爱。 《石门颂》是我...
    江南莫之阅读 1,081评论 4 9
  • 关系操作符(<, >, <=, >=) 相等操作符(==) 测试用例 可以看出,与前文所述隐式类型转换相符 BUG...
    Xinxing_Li阅读 560评论 0 2
  • 从很久很久以前,皮皮带着整个的灵魂融合意识,就已经不想要再参演周围人的各种戏份了。只是作为一个旁观者,看着这一出出...
    叶梅梅阅读 365评论 0 2