Geohash原理

1. 引言

        GeoHash本质上是空间索引的一种方式,其基本原理是将地球理解为一个二维平面,将平面递归分解成更小的子块,每个子块在一定经纬度范围内拥有相同的编码。以GeoHash方式建立空间索引,可以提高对空间poi数据进行经纬度检索的效率。

2.认识GeoHash

        GeoHash将二维的经纬度转换成字符串,比如下图展示了北京9个区域的GeoHash字符串,分别是WX4ER,WX4G2、WX4G3等等,每一个字符串代表了某一矩形区域。也就是说,这个矩形区域内所有的点(经纬度坐标)都共享相同的GeoHash字符串,这样既可以保护隐私(只表示大概区域位置而不是具体的点),又比较容易做缓存。

        Geohash编码中,字符串相似的表示距离相近(特殊情况后文阐述),这样可以利用字符串的前缀匹配来查询附近的POI信息。如下两个图所示,一个在城区,一个在郊区,城区的GeoHash字符串之间比较相似,郊区的字符串之间也比较相似,而城区和郊区的GeoHash字符串相似程度要低些。此外,不同的编码长度,表示不同的范围区间,字符串越长,表示的范围越精确。

3. GeoHash算法

        以经纬度值:(116.389550, 39.928167)进行算法说明,对纬度39.928167进行逼近编码 (地球纬度区间是[-90,90]

    a. 区间[-90,90]进行二分为[-90,0),[0,90],称为左右区间,可以确定39.928167属于右区间[0,90],给标记为1

    b. 接着将区间[0,90]进行二分为 [0,45),[45,90],可以确定39.928167属于左区间 [0,45),给标记为0

    c. 递归上述过程39.928167总是属于某个区间[a,b]。随着每次迭代区间[a,b]总在缩小,并越来越逼近39.928167

    d. 如果给定的纬度x(39.928167)属于左区间,则记录0,如果属于右区间则记录1,序列的长度跟给定的区间划分次数有关,如下图

        e. 同理,地球经度区间是[-180,180],可以对经度116.389550进行编码。通过上述计算, 纬度产生的编码为1 1 0 1 0 0 1 0 1 1 0 0 0 1 0,经度产生的编码为1 0 1 1 1 0 0 0 1 1 0 0 0  1 1

        f. 合并:偶数位放经度,奇数位放纬度,把2串编码组合生成新串如下图

        g. 首先将11100 11101 00100 01111 0000  01101转成十进制,对应着28、29、4、15,0,13 十进制对应的base32编码就是wx4g0e,如下图.

         h. 同理,将编码转换成经纬度的解码算法与之相反

4. GeoHash原理

        Geohash其实就是将整个地图或者某个分割所得的区域进行一次划分,由于采用的是base32编码方式,即Geohash中的每一个字母或者数字(如wx4g0e中的w)都是由5bits组成(2^5 = 32,base32),这5bits可以有32中不同的组合(0~31),这样我们可以将整个地图区域分为32个区域,通过00000 ~ 11111来标识这32个区域。第一次对地图划分后的情况如下图所示(每个区域中的编号对应于该区域所对应的编码)。

        Geohash的0、1串序列是经度0、1序列和纬度0、1序列中的数字交替进行排列的,偶数位对应的序列为经度序列,奇数位对应的序列为纬度序列,在进行第一次划分时,Geohash0、1序列中的前5个bits(11100),那么这5bits中有3bits是表示经度,2bits表示纬度,所以第一次划分时,是将经度划分成8个区段(2^3 = 8),将纬度划分为4个区段(2^2 = 4),这样就形成了32个区域。如下图

        同理,可以按照第一次划分所采用的方式对第一次划分所得的32个区域各自再次划分。

5.  GeoHash缺陷

        上文讲了GeoHash的计算步骤,仅仅说明是什么而没有说明为什么?为什么分别给经度和维度编码?为什么需要将经纬度两串编码交叉组合成一串编码?本节试图回答这一问题。

        如图所示,我们将二进制编码的结果填写到空间中,当将空间划分为四块时候,编码的顺序分别是左下角00,左上角01,右下脚10,右上角11,也就是类似于Z的曲线,当我们递归的将各个块分解成更小的子块时,编码的顺序是自相似的(分形),每一个子快也形成Z曲线,这种类型的曲线被称为Peano空间填充曲线。

        这种类型的空间填充曲线的优点是将二维空间转换成一维曲线(事实上是分形维),对大部分而言,编码相似的距离也相近,但Peano空间填充曲线最大的缺点就是突变性,有些编码相邻但距离却相差很远,比如0111与1000,编码是相邻的,但距离相差很大。

        除Peano空间填充曲线外,还有很多空间填充曲线,如图所示,其中效果公认较好是Hilbert空间填充曲线,相较于Peano曲线而言,Hilbert曲线没有较大的突变。但是由于Peano曲线实现更加简单,在使用的时候配合一定的解决手段,可以很好的满足大部分需求,因此TD内部Geohash算法采用的是Peano空间填充曲线。

6. 使用注意点

    a. 由于GeoHash是将区域划分为一个个规则矩形,并对每个矩形进行编码,这样在查询附近POI信息时会导致以下问题,比如红色的点是我们的位置,绿色的两个点分别是附近的两个餐馆,但是在查询的时候会发现距离较远餐馆的GeoHash编码与我们一样(因为在同一个GeoHash区域块上),而较近餐馆的GeoHash编码与我们不一致。这个问题往往产生在边界处。

        解决的思路很简单,我们查询时,除了使用定位点的GeoHash编码进行匹配外,还使用周围8个区域的GeoHash编码,这样可以避免这个问题。

    b. 我们已经知道现有的GeoHash算法使用的是Peano空间填充曲线,这种曲线会产生突变,造成了编码虽然相似但距离可能相差很大的问题,因此在查询附近餐馆时候,首先筛选GeoHash编码相似的POI点,然后进行实际距离计算。

    c. GeoHash Base32编码长度与精度。可以看出,当geohash base32编码长度为8时,精度在19米左右,而当编码长度为9时,精度在2米左右,编码长度需要根据数据情况进行选择。

7. 计算围栏内所有Geohash

        理解了geohash算法的基本原理之后,本节将介绍一个实际应用中常见的场景:计算围栏范围内所有的Geohash编码。该场景封装为函数可以表示如下:输入组成围栏的点经纬度坐标集合和指定的geohash长度,输出一组geohash编码。

        public static Set getHashByFence(List points, int length)

        具体算法步骤如下:

1. 输入围栏点坐标集合List points和指定的geohash长度length

2. 计算围栏的外包矩形的左上角和右下角坐标lat_min、lat_max、lng_min、lng_max

3. 根据lat_min、lat_max、lng_min、lng_max,计算外包矩形对角定点的距离d

4. 以外包矩形中心点为圆心,以d/2为半径做一个圆,计算圆覆盖范围内的geohash

    4.1 获取圆的外包矩形左上角和右下角定点坐标经纬度,存储到double[] locs

    4.2 根据geohash字符长度计算该长度geohash编码对应的经纬度间隔(latA,lngA)

    4.3 根据latA和lngA,计算出locs组成的矩形的左上角和右下角定点的经纬度,在geohash划分的网格的索引(也就是第几个),分别记为lat_min,lat_max,lng_min,lng_max

    4.4 计算lat_min,lat_max,lng_min,lng_max对应范围内左右geohash的二进制编码,然后将经纬度二进制编码uncode为geohash字符编码,保存为Set sets

5. 剔除sets中geohash编码对应矩形的中心点不在points围栏范围内的geohash,得到最终的geohash结果集

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,752评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,100评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,244评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,099评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,210评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,307评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,346评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,133评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,546评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,849评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,019评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,702评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,331评论 3 319
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,030评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,260评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,871评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,898评论 2 351

推荐阅读更多精彩内容