Java GC全集(五):GC 算法实现篇(二)并行GC

本文来自于HeapDump性能社区! !有性能问题,上HeapDump性能社区!
正文:

Parallel GC(并行GC)

并行垃圾收集器这一类组合, 在年轻代使用 标记-复制(mark-copy)算法, 在老年代使用 标记-清除-整理(mark-sweep-compact)算法。年轻代和老年代的垃圾回收都会触发STW事件,暂停所有的应用线程来执行垃圾收集。两者在执行 标记和 复制/整理阶段时都使用多个线程, 因此得名“(Parallel)”。通过并行执行, 使得GC时间大幅减少。

通过命令行参数 -XX:ParallelGCThreads=NNN 来指定 GC 线程数。 其默认值为CPU内核数。

可以通过下面的任意一组命令行参数来指定并行GC:

java -XX:+UseParallelGC com.mypackages.MyExecutableClass
java -XX:+UseParallelOldGC com.mypackages.MyExecutableClass
java -XX:+UseParallelGC -XX:+UseParallelOldGC com.mypackages.MyExecutableClass

并行垃圾收集器适用于多核服务器,主要目标是增加吞吐量。因为对系统资源的有效使用,能达到更高的吞吐量:

  • 在GC期间, 所有 CPU 内核都在并行清理垃圾, 所以暂停时间更短
  • 在两次GC周期的间隔期, 没有GC线程在运行,不会消耗任何系统资源

另一方面, 因为此GC的所有阶段都不能中断, 所以并行GC很容易出现长时间的卡顿. 如果延迟是系统的主要目标, 那么就应该选择其他垃圾收集器组合。

注: 长时间卡顿的意思是,此GC启动之后,属于一次性完成所有操作, 于是单次 pause 的时间会较长。

让我们看看并行垃圾收集器的GC日志长什么样, 从中我们可以得到哪些有用信息。下面的GC日志中显示了一次 minor GC 暂停 和一次 major GC 暂停:

1 ****-05-26T14:27:40.915-0200: 116.115: [GC (Allocation Failure) 
2       [PSYoungGen: 2694440K->1305132K(2796544K)] 
3    9556775K->8438926K(11185152K)
4    , 0.2406675 secs] 
5    [Times: user=1.77 sys=0.01, real=0.24 secs]
6  ****-05-26T14:27:41.155-0200: 116.356: [Full GC (Ergonomics) 
7       [PSYoungGen: 1305132K->0K(2796544K)] 
8       [ParOldGen: 7133794K->6597672K(8388608K)] 8438926K->6597672K(11185152K), 
9      [Metaspace: 6745K->6745K(1056768K)]
10    , 0.9158801 secs]
11   [Times: user=4.49 sys=0.64, real=0.92 secs]

Minor GC(小型GC)

第一次GC事件表示发生在年轻代的垃圾收集:

****-05-26T14:27:40.915-02001: 116.1152: [ GC3 (Allocation Failure4)
[PSYoungGen5: 2694440K->1305132K6 (2796544K)7] 9556775K->8438926K8
(11185152K)9, 0.2406675 secs10]
[Times: user=1.77 sys=0.01, real=0.24 secs]11

>

  1. ****-05-26T14:27:40.915-0200 – GC事件开始的时间. 其中-0200表示西二时区,而中国所在的东8区为 +0800
  2. 116.115 – GC事件开始时,相对于JVM启动时的间隔时间,单位是秒。
  3. GC – 用来区分 Minor GC 还是 Full GC 的标志。GC表明这是一次小型GC(Minor GC)
  4. Allocation Failure – 触发垃圾收集的原因。本次GC事件, 是由于年轻代中没有适当的空间存放新的数据结构引起的。
  5. PSYoungGen – 垃圾收集器的名称。这个名字表示的是在年轻代中使用的: 并行的 标记-复制(mark-copy), 全线暂停(STW) 垃圾收集器。
  6. 2694440K->1305132K – 在垃圾收集之前和之后的年轻代使用量。
  7. (2796544K) – 年轻代的总大小。
  8. 9556775K->8438926K – 在垃圾收集之前和之后整个堆内存的使用量。
  9. (11185152K) – 可用堆的总大小。
  10. 0.2406675 secs – GC事件持续的时间,以秒为单位。
  11. [Times: user=1.77 sys=0.01, real=0.24 secs] – GC事件的持续时间, 通过三个部分来衡量:
  • user – 在此次垃圾回收过程中, 由GC线程所消耗的总的CPU时间。
  • sys – GC过程中中操作系统调用和系统等待事件所消耗的时间。
  • real – 应用程序暂停的时间。在 Parallel GC 中, 这个数字约等于: (user time + system time)/GC线程数。 这里使用了8个线程。 请注意,总有一定比例的处理过程是不能并行进行的。

所以,可以简单地算出, 在垃圾收集之前, 堆内存总使用量为 9,556,775K。 其中年轻代为 2,694,440K。同时算出老年代使用量为 6,862,335K. 在垃圾收集之后, 年轻代使用量减少为 1,389,308K, 但总的堆内存使用量只减少了 1,117,849K。这表示有大小为 271,459K 的对象从年轻代提升到老年代。

122.png

Full GC(完全GC)

学习了并行GC如何清理年轻代之后, 下面介绍清理整个堆内存的GC日志以及如何进行分析:

****-05-26T14:27:41.155-0200 : 116.356 : [Full GC (Ergonomics)
[PSYoungGen: 1305132K->0K(2796544K)] [ParOldGen :7133794K->6597672K
(8388608K)] 8438926K->6597672K (11185152K),
[Metaspace: 6745K->6745K(1056768K)], 0.9158801 secs,
[Times: user=4.49 sys=0.64, real=0.92 secs]
  1. ****-05-26T14:27:41.155-0200 – GC事件开始的时间. 其中-0200表示西二时区,而中国所在的东8区为 +0800
  2. 116.356 – GC事件开始时,相对于JVM启动时的间隔时间,单位是秒。 我们可以看到, 此次事件在前一次 MinorGC完成之后立刻就开始了。
  3. Full GC – 用来表示此次是 Full GC 的标志。Full GC表明本次清理的是年轻代和老年代。
  4. Ergonomics – 触发垃圾收集的原因。Ergonomics 表示JVM内部环境认为此时可以进行一次垃圾收集。
  5. [PSYoungGen: 1305132K->0K(2796544K)] – 和上面的示例一样, 清理年轻代的垃圾收集器是名为 “PSYoungGen” 的STW收集器, 采用标记-复制(mark-copy)算法。 年轻代使用量从 1305132K 变为 0, 一般 Full GC 的结果都是这样。
  6. ParOldGen – 用于清理老年代空间的垃圾收集器类型。在这里使用的是名为 ParOldGen 的垃圾收集器, 这是一款并行 STW垃圾收集器, 算法为 标记-清除-整理(mark-sweep-compact)。
  7. 7133794K->6597672K – 在垃圾收集之前和之后老年代内存的使用情况。
  8. (8388608K) – 老年代的总空间大小。
  9. 8438926K->6597672K – 在垃圾收集之前和之后堆内存的使用情况。
  10. (11185152K) – 可用堆内存的总容量。
  11. [Metaspace: 6745K->6745K(1056768K)] – 类似的信息,关于 Metaspace 空间的。可以看出, 在GC事件中 Metaspace 里面没有回收任何对象。
  12. 0.9158801 secs – GC事件持续的时间,以秒为单位。
  13. [Times: user=4.49 sys=0.64, real=0.92 secs] – GC事件的持续时间, 通过三个部分来衡量:
  • user – 在此次垃圾回收过程中, 由GC线程所消耗的总的CPU时间。
  • sys – GC过程中中操作系统调用和系统等待事件所消耗的时间。
  • real – 应用程序暂停的时间。在 Parallel GC 中, 这个数字约等于: (user time + system time)/GC线程数。 这里使用了8个线程。 请注意,总有一定比例的处理过程是不能并行进行的。

同样,和 Minor GC 的区别是很明显的 —— 在此次GC事件中, 除了年轻代, 还清理了老年代和 Metaspace. 在GC事件前后的内存布局如下图所示:

v2-e837dba149fd2268ea06d6dc868f63cb_1440w.png

在本手册中,我们将介绍JVM中垃圾收集的实现原理,以及如何高效地利用GC。
第一篇:什么是垃圾回收?

第二篇:Java 中的垃圾收集原理解析

第三篇:GC算法基础篇

第四篇:GC 算法实现篇——串行GC

第五篇:GC 算法实现篇——并行GC

第六篇:GC 算法实现篇——并发标记-清除

第七篇:GC 算法实现篇——垃圾优先算法

第八篇:GC 调优基础篇

第九篇:GC 调优工具篇

第十篇:GC调优实战篇—高分配速率(High Allocation Rate)

第十一篇:GC 调优的实战篇—过早提升(Premature Promotion)

第十二篇:GC 调优的实战篇—Weak, Soft 及 Phantom 引用

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,012评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,628评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,653评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,485评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,574评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,590评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,596评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,340评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,794评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,102评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,276评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,940评论 5 339
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,583评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,201评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,441评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,173评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,136评论 2 352

推荐阅读更多精彩内容