💙openCV 下载安装
❤️基础环境
- 操作系统:Ubuntu 18.04.5
- 编程工具:bash shell
- VScode
- 基础的 gcc、G++ 安装
❤️下载一个喜欢的版本即可
❤️极简【无脑】安装
# 解压到服务器目录
unzip opencv-4.5.3
cd opencv-4.5.3/
# 开始安装之旅
mkdir build
cd build/
# root 用户直接运行,会默认编译安装到/usr/local 目录下
cmake ..
make -j16
make install
# 普通用户,没有 /usr/local 写入权限,需要 指定安装路径
make install DESTDIR=/home/Moli/usr/local
💙openCV 读取保存图像【极简示例】
程序只包含 | example.cpp 和 CMakeLists.txt 即可
❤️example.cpp
#include "opencv2/core.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/videoio.hpp"
#include <iostream>
using namespace cv;
using namespace std;
int main()
{
cout << "Built with OpenCV " << CV_VERSION << endl;
Mat src = cv::imread("../conda.png");
// cv::imshow("src", src);
// waitKey(0);
// 图像缩放
int width{256}, height{256};
cv::resize(src, src, cv::Size(width, height));
cv::imwrite("256src.png", src);
return 0;
}
❤️CMakeLists.txt
配置 OpenCV_DIR 路径【openCV build 目录即可】
# cmake needs this line
cmake_minimum_required(VERSION 3.1)
# Define project name
project(first_墨理_project)
# Find OpenCV, you may need to set OpenCV_DIR variable
# to the absolute path to the directory containing OpenCVConfig.cmake file
# via the command line or GUI
set(OpenCV_DIR /home/墨理/project/project21Next/vscodeFirst/opencv-4.5.3/build)
find_package(OpenCV REQUIRED)
# If the package has been found, several variables will
# be set, you can find the full list with descriptions
# in the OpenCVConfig.cmake file.
# Print some message showing some of them
message(STATUS "OpenCV library status:")
message(STATUS " config: ${OpenCV_DIR}")
message(STATUS " version: ${OpenCV_VERSION}")
message(STATUS " libraries: ${OpenCV_LIBS}")
message(STATUS " include path: ${OpenCV_INCLUDE_DIRS}")
# Declare the executable target built from your sources
add_executable(first example.cpp)
# Link your application with OpenCV libraries
target_link_libraries(first PRIVATE ${OpenCV_LIBS})
💙Linux 下编译运行
命令如下
mkdir build
cd build/
cmake ..
make
# 生成得到可执行文件 first | 运行即可
./first
查看生成的缩放图片【没看错,是在下】
博主简介:软件工程硕士、已毕业、马上 10w 读者 粉丝
- 🍊 计算机视觉:超分重建、图像修复、目标检测、风格迁移 等领域 稍有所学
- 🍊 AI 工程化:Ncnn、MNN、TensorRT 正在 学习
- 🍊 C++、Python、Java 略懂一二
喜欢请关注 墨理学AI
取经路上,让墨理学AI 陪你畅享更多有趣AI