Hadoop学习(三) Map/Reduce编程

WordCount是一个简单的应用,它读入文本文件,然后统计出字符出现的频率。输入是文本文件,输出也是文本文件,它的每一行包含了一个字符和它出现的频率,用一个制表符隔开。这是《Hadoop Map/Reduce教程》中的一个入门的Map/Reduce编程例子,可以说是Map/Reduce版的Hello,World.

先随便找一个英文的文本文件,重新命名为a01.dat,通过Upload files to DFS,将a01.dat文件上传到DFS中。

在新建项目向导中,新建一个Map/Reduce项目。一个Map/Reduce项目,包含三个主要文件,一个是Map文件,一个是Reduce文件,还有一个是主文件。源代码如下:

Map.java

        import java.io.IOException;
        import java.util.*;
        import org.apache.hadoop.io.*;
        import org.apache.hadoop.mapreduce.Mapper;

        public class Map extends Mapper<LongWritable, Text, Text, IntWritable> {
            private final static IntWritable one = new IntWritable(1);
            private Text word = new Text();
            public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
                String line = value.toString();
                StringTokenizer tokenizer = new StringTokenizer(line);
                while (tokenizer.hasMoreTokens()) {
                    word.set(tokenizer.nextToken());
                    context.write(word, one);
                }
            }
         } 

Reduce.java

        import java.io.IOException;
        import org.apache.hadoop.io.*;
        import org.apache.hadoop.mapreduce.*;

        public class Reduce extends Reducer<Text, IntWritable, Text, IntWritable> {
            public void reduce(Text key, Iterable<IntWritable> values, Context context) 
              throws IOException, InterruptedException {
                int sum = 0;
                for (IntWritable val : values) {
                    sum += val.get();
                }
                context.write(key, new IntWritable(sum));
            }
         }

WordCount.java

        import org.apache.hadoop.fs.Path;
        import org.apache.hadoop.conf.*;
        import org.apache.hadoop.io.*;
        import org.apache.hadoop.mapreduce.*;
        import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
        import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
        import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
        import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
                
        public class WordCount {
                
          public static void main(String[] args) throws Exception {
            Configuration conf = new Configuration();
            Job job = new Job(conf, "wordcount");
            job.setOutputKeyClass(Text.class);
            job.setOutputValueClass(IntWritable.class);
            job.setMapperClass(Map.class);
            job.setReducerClass(Reduce.class);
            job.setInputFormatClass(TextInputFormat.class);
            job.setOutputFormatClass(TextOutputFormat.class);
            FileInputFormat.addInputPath(job, new Path("hdfs://localhost:9000/a01.dat"));
            FileOutputFormat.setOutputPath(job, new Path("hdfs://localhost:9000/output"));
            job.waitForCompletion(true);
            }
        }

选择Run As - Run on Hadoop

运行结果存放在output路径下,可以通过http://localhost:50070/查看。

该程序将文本文件的输入,通过Map函数,转换成一组 key,value 有序对。然后根据key,合并成 key,value1,value2....,然后再通过Reducer函数,做累加操作,计算出每个单词的出现次数,生成新的 key,sum 有序对后输出。

手头上有个邮件列表,包含了几万个邮件地址,于是修改了一下map函数,统计各个邮箱的使用情况。修改后的map为:

        public void map(LongWritable key, Text value, Context context) 
            throws IOException, InterruptedException {
            String[] sarray=value.toString().split("@");
            word.set(sarray[1]);
            context.write(word, one);
        }

运行后得到以下结果:

         126.com 17230
          139.com 573
          163.com 35928
          21cn.com  1372
          citiz.net 223
          eyou.com  385
          foxmail.com 143
          gmail.com 2228
          hotmail.com 11021
          live.cn 437
          msn.com 562
          qq.com  22185
          sina.com  9671
          sina.com.cn 540
          sogou.com 222
          sohu.com  4106
          tom.com 2676
          vip.163.com 129
          vip.qq.com  589
          vip.sina.com  355
          vip.sohu.com  285
          yahoo.cn  14607
          yahoo.com 315
          yahoo.com.cn  10770
          yahoo.com.hk  252
          yeah.net  828
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,509评论 6 504
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,806评论 3 394
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,875评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,441评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,488评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,365评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,190评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,062评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,500评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,706评论 3 335
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,834评论 1 347
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,559评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,167评论 3 328
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,779评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,912评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,958评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,779评论 2 354

推荐阅读更多精彩内容

  • 目的这篇教程从用户的角度出发,全面地介绍了Hadoop Map/Reduce框架的各个方面。先决条件请先确认Had...
    SeanC52111阅读 1,725评论 0 1
  • 一个Map/Reduce 作业(job) 通常会把输入的数据(input file)切分为若干独立的数据块(spl...
    Alukar阅读 6,698评论 0 15
  • 一.简述如何安装配置apache 的一个开源的hadoop 1.使用root账户登陆 2.修改ip 3.修改hos...
    栀子花_ef39阅读 4,947评论 0 52
  • 感恩朋友的关心,温暖一直都在!感恩同事的帮助,处理了很多问题。感恩客户的合作,让我顺利谈判成功!感恩钱宝宝不断来到...
    我不叫许仲斌阅读 147评论 0 2
  • 儿子,妈妈能给你一个你想回的家吗? 最近网上热传了北大学子王猛不想回家的事情,一时间舆论纷纷,有人抨击他的孝道,有...
    wentingguo阅读 333评论 0 0