颜色特征提取(一)

颜色特征与像素点的特征息息相关,所有属于图像的像素都会对颜色特征造成影响。对图像进行颜色特征提取可以忽略图像的形状方向等因素。需要注意的是,颜色特征并不具备决定性,仅使用颜色特征描述图像时,会导致图像检索的不准确,大量无关的图像也会被检索出来。在此基础上进一步采取归一化操作还能有效剔除尺度变化的影响,其不足之处在于无法体现出不同颜色空间分布信息的差异化。

常用的颜色特征提取方法有:

  1. 颜色直方图,它常被用来描述图像的颜色特征信息,值得一提的是,它在设计上主要是注重于图像的全局特征描述。因此对于图像的一些局部特征可能没有较好的展现方式。所以它更适用于那些不注重局部特征描述的需求,可以适当忽略图像空间位置影响的场景。对于这类情况会更加的简单有效。在体现颜色在整体图像中所占的比例,以及全局的颜色特征信息方面,具有极大的优势。

  2. 颜色集,上面已经提到颜色直方图法无法准确描述图像的局部颜色特征,更适用于全局的颜色特征提取。颜色集与颜色直方图很类似,一般是采用具有视觉均衡的颜色空间[16]。它的具体原理是对图像进行分割,将整体图像由许多块状的小区域图像组成,对于每一块区域的图像都添加一个索引,这是一种特定的表示方式。当每一块区域都有一个索引来描述时,对于整体的目标图像来说,这些索引的集合就可以用来描述整个图像的颜色特征信息。这些索引的集合即是颜色集。

  3. 颜色矩,它与上述的两种特征提取方法均有所不同。它的原理是利用数学中的矩来表示图像区域中每一个颜色分布。事实上图像的特征信息主要集中在低阶的矩中,因此,利用该特性,采用低阶矩就足以描述图像的颜色特征[17]。不同要求下使用的阶数会有所不同。对于待识别的任何物体,颜色都是标志物体的重要特征。

示例及代码实现:
1、颜色直方图

#include <opencv2/opencv.hpp>
#include<opencv2\core\core.hpp>  
#include<opencv2\highgui\highgui.hpp>  
#define cvQueryHistValue_2D( hist, idx0, idx1 )  cvGetReal2D( (hist)->bins, (idx0), (idx1) )
using namespace cv;
using namespace std;



int main(int argc, char** argv)
{
    IplImage * src = cvLoadImage("D:\\test3.png");

    IplImage* hsv = cvCreateImage(cvGetSize(src), 8, 3);
    IplImage* h_plane = cvCreateImage(cvGetSize(src), 8, 1);
    IplImage* s_plane = cvCreateImage(cvGetSize(src), 8, 1);
    IplImage* v_plane = cvCreateImage(cvGetSize(src), 8, 1);
    IplImage* planes[] = { h_plane, s_plane };

    /** H 分量划分为16个等级,S分量划分为8个等级 */
    int h_bins = 16, s_bins = 8;
    int hist_size[] = { h_bins, s_bins };

    /** H 分量的变化范围 */
    float h_ranges[] = { 0, 180 };

    /** S 分量的变化范围*/
    float s_ranges[] = { 0, 255 };
    float* ranges[] = { h_ranges, s_ranges };

    /** 输入图像转换到HSV颜色空间 */
    cvCvtColor(src, hsv, CV_BGR2HSV);
    cvSplit(hsv, h_plane, s_plane, v_plane, 0);

    /** 创建直方图,二维, 每个维度上均分 */
    CvHistogram * hist = cvCreateHist(2, hist_size, CV_HIST_ARRAY, ranges, 1);
    /** 根据H,S两个平面数据统计直方图 */
    cvCalcHist(planes, hist, 0, 0);

    /** 获取直方图统计的最大值,用于动态显示直方图 */
    float max_value;
    cvGetMinMaxHistValue(hist, 0, &max_value, 0, 0);


    /** 设置直方图显示图像 */
    int height = 240;
    int width = (h_bins*s_bins * 6);
    IplImage* hist_img = cvCreateImage(cvSize(width, height), 8, 3);
    cvZero(hist_img);

    /** 用来进行HSV到RGB颜色转换的临时单位图像 */
    IplImage * hsv_color = cvCreateImage(cvSize(1, 1), 8, 3);
    IplImage * rgb_color = cvCreateImage(cvSize(1, 1), 8, 3);
    int bin_w = width / (h_bins * s_bins);
    for (int h = 0; h < h_bins; h++)
    {
        for (int s = 0; s < s_bins; s++)
        {
            int i = h*s_bins + s;
            /** 获得直方图中的统计次数,计算显示在图像中的高度 */
            float bin_val = cvQueryHistValue_2D(hist, h, s);
            int intensity = cvRound(bin_val*height / max_value);

            /** 获得当前直方图代表的颜色,转换成RGB用于绘制 */
            cvSet2D(hsv_color, 0, 0, cvScalar(h*180.f / h_bins, s*255.f / s_bins, 255, 0));
            cvCvtColor(hsv_color, rgb_color, CV_HSV2BGR);
            CvScalar color = cvGet2D(rgb_color, 0, 0);

            cvRectangle(hist_img, cvPoint(i*bin_w, height),
                cvPoint((i + 1)*bin_w, height - intensity),
                color, -1, 8, 0);
        }
    }

    cvNamedWindow("Source", 1);
    cvShowImage("Source", src);

    cvNamedWindow("H-S Histogram", 1);
    cvShowImage("H-S Histogram", hist_img);

    cvWaitKey(0);
}
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,590评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 86,808评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,151评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,779评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,773评论 5 367
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,656评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,022评论 3 398
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,678评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,038评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,659评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,756评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,411评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,005评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,973评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,053评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,495评论 2 343

推荐阅读更多精彩内容

  • 时间已经过去了一年多了,一直想为你写点东西。但每每想到你,内心的翻江倒海让我无从下笔。我好后悔惹你生气,好后悔让你...
    LucasLLu阅读 158评论 0 0
  • 跟之前的好朋友也感觉聊不下去了,思前想后,可能真的是价值观差异太大,很多新鲜事物,他们没办法接受,我又没有办法回归...
    婚姻家庭咨询师阿静阅读 219评论 0 0
  • 想起那个一米四二的小男孩儿 曾坐在我的大腿上哭 说我对他不好 不向着他 我抱着他 他激动的情绪慢慢平息 “大娘,我...
    天籁德音阅读 212评论 0 6