[USACO09Open] Tower of Hay 干草塔

为了调整电灯亮度,贝西要用干草包堆出一座塔,然后爬到牛棚顶去把灯泡换掉。干草包会从传送带上运来,共会出现N包干草,第i包干草的宽度是W i ,高度和长度统一为1。干草塔要从底层开始铺建。贝西会选择最先送来的若干包干草,堆在地上作为第一层,然后再把紧接着送来的几包干草包放在第二层, 再铺建第三层……重复这个过程, 一直到所有的干 草全部用完。每层的干草包必须紧靠在一起,不出现缝隙,而且为了建筑稳定,上层干草的宽度不能超过下层的宽度。 按顺序运来的干草包一定要都用上, 不能将其中几个干草包弃置不用。贝西的目标是建一座最高的塔,请你来帮助她完成这个任务吧。

输入格式

第一行:单个整数:N,1≤N≤100000第二行到N + 1行:第i + 1行有一个整数W_i,1 ≤ W_i ≤ 10000

输出格式

第一行:单个整数,表示可以建立的最高高度

样例输入

3
1
2
3

样例输出

2

题解

首先考虑贪心的做法。让我们看下面这张图



如图,一个小学生都明白的道理:对于一个三角形,对它进行等面积变换,为了使其越长,其形状必须越瘦。同理,在这道题中我们可以将干草堆抽象为三角形,为了让干草堆更高,我们只能让其更瘦。这里引用ZKW大佬的证明过程。

任意取出一个能使层数最高的方案,设有C_A层,把其中从下往上每一层最大的块编号记为A_i;任取一个能使底边最短的方案,设有C_B层,把其中从下往上每一层最大的块编号记为B_i。显然A_1>=B_1,A*C_B<=B*C_B,这说明至少存在一个k属于(1,C_B),满足A*k-1>=B*k-1且A*k<=B*k。也就是说,方案A第K层完全被方案B第K 层包含。构造一个新方案,第K层往上按方案 A,往下按方案B,两边都不要的块放中间当第K层。新方案的层数与A相同,而底边长度与B相同。证毕。

这时我们选择枚举最底层的组成,设f[i]表示从n到i中最底层的宽度,则可知f[i]=min(sum[j-1到i])。由于上一层的宽度永远小于下一层的宽度,所以f[j]<=sum[j-1到i]

再观察一下,由于所有的干草堆要全部使用且对于第i-1个干草堆放在第h层时,第i个必然放在第h层或第h+1层,我们可以令sum[i]表示宽度的前缀和,而sum[i]是随i的增大而增大的,所以从i到n一旦发现一个符合条件的决策j,便将其取出来更新f[i]。但是因为这样做的复杂度较大,仍不能通过所有数据。

再次分析,发现所有的决策的值(例如对于决策j值即为sum[j-1])由n往前都是单调递减的,也就是一个比一个优。因此决定性的因素则是他们的生效时间。

#include <bits/stdc++.h>
#define maxn 100009
using namespace std;
inline char get(){
    static char buf[3000],*p1=buf,*p2=buf;
    return p1==p2 && (p2=(p1=buf)+fread(buf,1,3000,stdin),p1==p2)?EOF:*p1++; 
}
inline int read(){
    register char c=get();register int f=1,_=0;
    while(c>'9' || c<'0')f=(c=='-')?-1:1,c=get();
    while(c<='9' && c>='0')_=(_<<3)+(_<<1)+(c^48),c=get();
    return _*f;
}
int num[maxn],dp[maxn],f[maxn],sum[maxn],w[maxn];
int n;
int main(){
    //freopen("1.txt","r",stdin);
    n=read();
    for(register int i=1;i<=n;i++){
        w[i]=read();
        sum[i]=sum[i-1]+w[i];
    }
    num[1]=n+1;
    int h=1,t=1;
    for(register int i=n;i;i--){
        while(h<t && f[num[h+1]]<=sum[num[h+1]-1]-sum[i-1]) ++h;
        f[i]=sum[num[h]-1]-sum[i-1];
        dp[i]=dp[num[h]]+1; 
        num[++t]=i;
        while((t>h) && (f[num[t-1]]-sum[num[t-1]-1]+sum[num[t]-1]>f[num[t]]))t--,num[t]=num[t+1];
    }
    cout<<dp[1];
    return 0;
}
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,753评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,668评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 166,090评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,010评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,054评论 6 395
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,806评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,484评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,380评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,873评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,021评论 3 338
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,158评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,838评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,499评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,044评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,159评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,449评论 3 374
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,136评论 2 356

推荐阅读更多精彩内容

  • 国家电网公司企业标准(Q/GDW)- 面向对象的用电信息数据交换协议 - 报批稿:20170802 前言: 排版 ...
    庭说阅读 10,993评论 6 13
  • 直到今天我才醒悟,对你的念念不忘只是我心中的那一份执念,也许你一直都明白,只是不愿点破我的不堪。
    小妍儿0310阅读 136评论 0 0
  • 阳光宝贝,今天是星期六,你爸继续做他最喜欢的事,骑上他心爱自行车,去15公里之外的图书馆读书看报。我留在家中,重新...
    思齐之路阅读 409评论 2 3