线程池

#include<thread>
#include<mutex>
#include<vector>
#include<iostream>
#include<string>
#include<deque>
using namespace std;
namespace Z1 {
class Task
    {
    public:
        Task(void* arg = NULL, const std::string taskName = "")
            : arg_(arg)
            , taskName_(taskName)
        {
        }
        virtual ~Task()
        {
        }
        void setArg(void* arg)
        {
            arg_ = arg;
        }

        virtual int run() = 0;

    protected:
        void*       arg_;
        std::string taskName_;
    };
    class ThreadPool{
    private:
        volatile bool isRunning_;//volatile的变量是说这变量可能会被意想不到地改变,这样,编译器就不会去假设这个变量的值了。
        int threadNum_;
        pthread_t* threads_;
        deque<Task *> taskDeque_;
        pthread_mutex_t mutex_;
        pthread_cond_t condition_;
    public:
        ThreadPool(int threadNum = 10);
        ~ThreadPool();

        size_t addTask(Task* task);
        void stop();
        int size();
        Task* take();
    private:
        int createThreads();
        static void* threadFunc(void * threadData);

    private:
        ThreadPool& operator=(const ThreadPool&);
        ThreadPool(const ThreadPool&);
    };
}
#include<threadpool.h>
#include<assert.h>
namespace Z1 {
    ThreadPool::ThreadPool(int threadNum)
    {
        isRunning_ = true;
        threadNum_ = threadNum;
        createThreads();
    }
    ThreadPool::~ThreadPool()
    {
        stop();

        deque<Task *>::iterator pd;
        for(pd = taskDeque_.begin();pd != taskDeque_.end();++pd)
            delete *pd;
        taskDeque_.clear();
    }
    int ThreadPool::createThreads()
    {
        pthread_mutex_init(&mutex_,NULL);
        pthread_cond_init(&condition_,NULL);
        threads_ = new pthread_t[threadNum_];
        //创建threadNum_个线程,并开始运行线程,在线程里取任务
        //线程函数的参数是threadpool对象,每个线程的参数对象都是一样的(对象地址一样),传对象是因为线程函数是static的
        for(int i = 0;i < threadNum_;++i)
            pthread_create(&threads_[i],NULL,threadFunc,this);
        return 0;
    }
    size_t ThreadPool:: addTask(Task* task)//任务队列中装的是任务对象指针
    {
        pthread_mutex_lock(&mutex_);
        taskDeque_.push_back(task);
        size_t size = taskDeque_.size();
        pthread_cond_signal(&condition_);
        pthread_mutex_unlock(&mutex_);
        return size;
    }
    void ThreadPool::stop()
    {
        if(!isRunning_)
            return;
        isRunning_ = false;
        pthread_cond_broadcast(&condition_);//激活全部线程的条件变量,先激活首先获得互斥锁的那一个。

        for(int i = 0;i < threadNum_;++i)
            pthread_join(threads_[i],NULL);//调用这个函数等待一个线程终止(在主线程中写时,若新开的线程没有终止,则阻塞在这里)
                                           //这个函数类似于多进程中的waitpid(杀死进程,防止进程僵死)。
        delete[] threads_;//指向线程ID的指针
        threads_ = NULL;
        pthread_mutex_destroy(&mutex_);
        pthread_cond_destroy(&condition_);
    }
    int ThreadPool::size()
    {
        pthread_mutex_lock(&mutex_);
        size_t size = taskDeque_.size();
        pthread_mutex_unlock(&mutex_);
        return size;
    }
    Task* ThreadPool::take()//从任务队列中取任务(取得的是一个指向任务对象的指针)
    {
        Task* task = NULL;
        while(!task)
        {
            pthread_mutex_lock(&mutex_);
            while(taskDeque_.empty() && isRunning_)//没有任务的话等待(使用while是防止虚假唤醒)
                pthread_cond_wait(&condition_,&mutex_);//线程池stop的时候这里会被激活,AND isRunning_ = false
            if(!isRunning_)
            {
                pthread_mutex_unlock(&mutex_);
                break;
            }
            else if(taskDeque_.empty())//防止虚假唤醒需要在唤醒后再做一次判断。
            {
                pthread_mutex_unlock(&mutex_);
                continue;
            }
            assert(!taskDeque_.empty());
            task = taskDeque_.front();
            taskDeque_.pop_front();
            pthread_mutex_unlock(&mutex_);
        }
        return task;
    }
    void* ThreadPool::threadFunc(void* arg)//在pthread_create之后就会执行,然后从任务队列中取任务,没有任务的话等待
    {
        pthread_t tid = pthread_self();
        //static函数没有this指针,所以必须传进来对象,每个线程中的对象地址是相同的,也就是说每个线程中其实是一个对象
        ThreadPool* pool = static_cast<ThreadPool*>(arg);
        //cout<<pool<<endl;
        while (pool->isRunning_)//当前线程执行完任务之后,再从任务队列中取任务
        {
            Task* task = pool->take();//如果线程池一直在运行,且没有任务,则会等待任务进队列
            if (!task)//
            {
                printf("thread %lu will exit\n", tid);//执行stop函数之后执行(直接调用stop或者析构函数执行),
                                                      //因为如果线程池一直在运行,且没有任务,则会等待任务进队列
                break;
            }

            assert(task);
            task->run();
        }
        return 0;
   }
}
#include <iostream>
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <pthread.h>
#include "threadpool.h"


class MyTask: public Z1::Task
{
public:
    MyTask(){}

    virtual int run()
    {
        printf("thread[%lu] : %s\n", pthread_self(), (char*)this->arg_);
        sleep(1);
        return 0;
    }
};

int main()
{

    char szTmp[] = "hello world";

    MyTask taskObj;
    taskObj.setArg((void*)szTmp);

    Z1::ThreadPool threadPool(10);
    for(int i = 0; i < 30; i++)
    {
        threadPool.addTask(&taskObj);
    }

    while(1)
    {
        printf("there are still %d tasks need to process\n", threadPool.size());
        if (threadPool.size() == 0)
        {
            threadPool.stop();
            printf("Now I will exit from main\n");
            exit(0);
        }
        sleep(2);
    }
    sleep(5);
    return 0;
}
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容