pytorch基本张量数据操作(一)

PyTorch:张量

Numpy是一个很棒的框架,但是它不能利用GPU来加速其数值计算。对于现代深度神经网络,GPU通常可以提供50倍或更高的加速,因此不幸的是,仅凭numpy不足以实现现代深度学习。

最基本的PyTorch概念:Tensor(张量)。

PyTorch张量在概念上与numpy数组相同:张量是n维数组,而PyTorch提供了许多在这些张量上运行的功能。张量可以跟踪计算图和渐变,但它们也可用作科学计算的通用工具。

与numpy不同,PyTorch张量可以利用GPU加速其数字计算。要在GPU上运行PyTorch Tensor,只需要将其转换为新的数据类型。

1、view函数

view函数的作用为重构张量的维度,相当于numpy中resize()的功能。

2、乘法操作

torch.mul(a, b)是矩阵a和b对应位相乘,a和b的维度必须相等,比如a的维度是(1, 2),b的维度是(1, 2),返回的仍是(1, 2)的矩阵。

torch.mm(a, b)是矩阵a和b矩阵相乘,比如a的维度是(1, 2),b的维度是(2, 3),返回的就是(1, 3)的矩阵。

3、gather函数

函数torch.gather(input, dim, index, out=None) → Tensor

沿给定轴 dim ,将输入索引张量 index 指定位置的值进行聚合.

4、Torch Tensor和NumPy 相互转换

将一个Torch Tensor转换为NumPy数组:

a = torch.ones(5)

b = a.numpy()

NumPy Array 转化成 Torch Tensor:

a = np.ones(5)

b = torch.from_numpy(a)

5、Autograd: 自动求导机制

PyTorch 中所有神经网络的核心是 autograd 包。autograd包为张量上的所有操作提供了自动求导。 它是一个在运行时定义的框架,这意味着反向传播是根据你的代码来确定如何运行,并且每次迭代可以是不同的。

torch.Tensor是这个包的核心类。如果设置 .requires_grad 为 True,那么将会追踪所有对于该张量的操作。 当完成计算后通过调用 .backward(),自动计算所有的梯度, 这个张量的所有梯度将会自动积累到 .grad 属性。

要阻止张量跟踪历史记录,可以调用.detach()方法将其与计算历史记录分离,并禁止跟踪它将来的计算记录。

为了防止跟踪历史记录(和使用内存),可以将代码块包装在“with torch.no_grad():”中。 在评估模型时特别有用,因为模型可能具有requires_grad = True的可训练参数,但是我们不需要梯度计算。

在自动梯度计算中还有另外一个重要的类Function.

Tensor 和 Function互相连接并生成一个有向无环图,它表示和存储了完整的计算历史。 每个张量都有一个.grad_fn属性,这个属性引用了一个创建了Tensor的Function(除非这个张量是用户手动创建的,即,这个张量的 grad_fn 是 None)。

如果需要计算导数,你可以在Tensor上调用.backward()。 如果Tensor是一个标量(即它包含一个元素数据)则不需要为backward()指定任何参数, 但是如果它有更多的元素,你需要指定一个gradient 参数来匹配张量的形状。

在其他的文章中你可能会看到说将Tensor包裹到Variable中提供自动梯度计算,Variable 这个在0.41版中已经被标注为过期了,现在可以直接使用Tensor。



梯度计算举例:

import torch

#创建一个张量并设置 requires_grad=True 用来追踪他的计算历史

x = torch.ones(2, 2, requires_grad=True)

#对张量进行操作:

y = x + 2

z = y * y * 3

out = z.mean()

#计算梯度

#反向传播 因为 out是一个纯量(scalar),out.backward() 等于out.backward(torch.tensor(1))。

out.backward()

print(x.grad)





参考资料:https://github.com/zergtant/pytorch-handbook

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,258评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,335评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,225评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,126评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,140评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,098评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,018评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,857评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,298评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,518评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,678评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,400评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,993评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,638评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,801评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,661评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,558评论 2 352

推荐阅读更多精彩内容