数据结构算法之美-23讲二叉树基础(上):树、二叉树

数据结构算法之美-23讲二叉树基础(上):树、二叉树

特别备注

本系列非原创,文章原文摘自极客时间-数据结构算法之美,用于平常学习记录。如有侵权,请联系我删除,谢谢!

img

前面我们讲的都是线性表结构,栈、队列等等。今天我们讲一种非线性表结构,树。树这种数据结构比线性表的数据结构要复杂得多,内容也比较多,所以我会分四节来讲解。

img

我反复强调过,带着问题学习,是最有效的学习方式之一,所以在正式的内容开始之前,我还是给你出一道思考题:二叉树有哪几种存储方式?什么样的二叉树适合用数组来存储?

带着这些问题,我们就来学习今天的内容,树!

树(Tree)

我们首先来看,什么是“树”?再完备的定义,都没有图直观。所以我在图中画了几棵“树”。你来看看,这些“树”都有什么特征?

img

你有没有发现,“树”这种数据结构真的很像我们现实生活中的“树”,这里面每个元素我们叫作“节点”;用来连线相邻节点之间的关系,我们叫作“父子关系”。

比如下面这幅图,A节点就是B节点的父节点,B节点是A节点的子节点。B、C、D这三个节点的父节点是同一个节点,所以它们之间互称为兄弟节点。我们把没有父节点的节点叫作根节点,也就是图中的节点E。我们把没有子节点的节点叫作叶子节点或者叶节点,比如图中的G、H、I、J、K、L都是叶子节点。

img

除此之外,关于“树”,还有三个比较相似的概念:高度(Height)、深度(Depth)、(Level)。它们的定义是这样的:

img

这三个概念的定义比较容易混淆,描述起来也比较空洞。我举个例子说明一下,你一看应该就能明白。

img

记这几个概念,我还有一个小窍门,就是类比“高度”“深度”“层”这几个名词在生活中的含义。

在我们的生活中,“高度”这个概念,其实就是从下往上度量,比如我们要度量第10层楼的高度、第13层楼的高度,起点都是地面。所以,树这种数据结构的高度也是一样,从最底层开始计数,并且计数的起点是0。

“深度”这个概念在生活中是从上往下度量的,比如水中鱼的深度,是从水平面开始度量的。所以,树这种数据结构的深度也是类似的,从根结点开始度量,并且计数起点也是0。

“层数”跟深度的计算类似,不过,计数起点是1,也就是说根节点的位于第1层。

二叉树(Binary Tree)

树结构多种多样,不过我们最常用还是二叉树。

二叉树,顾名思义,每个节点最多有两个“叉”,也就是两个子节点,分别是左子节点右子***节***点**。不过,二叉树并不要求每个节点都有两个子节点,有的节点只有左子节点,有的节点只有右子节点。我画的这几个都是二叉树。以此类推,你可以想象一下四叉树、八叉树长什么样子。

img

这个图里面,有两个比较特殊的二叉树,分别是编号2和编号3这两个。

其中,编号2的二叉树中,叶子节点全都在最底层,除了叶子节点之外,每个节点都有左右两个子节点,这种二叉树就叫作满二叉树

编号3的二叉树中,叶子节点都在最底下两层,最后一层的叶子节点都靠左排列,并且除了最后一层,其他层的节点个数都要达到最大,这种二叉树叫作完全二叉树

满二叉树很好理解,也很好识别,但是完全二叉树,有的人可能就分不清了。我画了几个完全二叉树和非完全二叉树的例子,你可以对比着看看。

img

你可能会说,满二叉树的特征非常明显,我们把它单独拎出来讲,这个可以理解。但是完全二叉树的特征不怎么明显啊,单从长相上来看,完全二叉树并没有特别特殊的地方啊,更像是“芸芸众树”中的一种。

那我们为什么还要特意把它拎出来讲呢?为什么偏偏把最后一层的叶子节点靠左排列的叫完全二叉树?如果靠右排列就不能叫完全二叉树了吗?这个定义的由来或者说目的在哪里?

要理解完全二叉树定义的由来,我们需要先了解,如何表示(或者存储)一棵二叉树?

想要存储一棵二叉树,我们有两种方法,一种是基于指针或者引用的二叉链式存储法,一种是基于数组的顺序存储法。

我们先来看比较简单、直观的链式存储法。从图中你应该可以很清楚地看到,每个节点有三个字段,其中一个存储数据,另外两个是指向左右子节点的指针。我们只要拎住根节点,就可以通过左右子节点的指针,把整棵树都串起来。这种存储方式我们比较常用。大部分二叉树代码都是通过这种结构来实现的。

img

我们再来看,基于数组的顺序存储法。我们把根节点存储在下标i = 1的位置,那左子节点存储在下标2 * i = 2的位置,右子节点存储在2 * i + 1 = 3的位置。以此类推,B节点的左子节点存储在2 * i = 2 * 2 = 4的位置,右子节点存储在2 * i + 1 = 2 * 2 + 1 = 5的位置。

img

我来总结一下,如果节点X存储在数组中下标为i的位置,下标为2 * i 的位置存储的就是左子节点,下标为2 * i + 1的位置存储的就是右子节点。反过来,下标为i/2的位置存储就是它的父节点。通过这种方式,我们只要知道根节点存储的位置(一般情况下,为了方便计算子节点,根节点会存储在下标为1的位置),这样就可以通过下标计算,把整棵树都串起来。

不过,我刚刚举的例子是一棵完全二叉树,所以仅仅“浪费”了一个下标为0的存储位置。如果是非完全二叉树,其实会浪费比较多的数组存储空间。你可以看我举的下面这个例子。

img

所以,如果某棵二叉树是一棵完全二叉树,那用数组存储无疑是最节省内存的一种方式。因为数组的存储方式并不需要像链式存储法那样,要存储额外的左右子节点的指针。这也是为什么完全二叉树会单独拎出来的原因,也是为什么完全二叉树要求最后一层的子节点都靠左的原因。

当我们讲到堆和堆排序的时候,你会发现,堆其实就是一种完全二叉树,最常用的存储方式就是数组。

二叉树的遍历

前面我讲了二叉树的基本定义和存储方法,现在我们来看二叉树中非常重要的操作,二叉树的遍历。这也是非常常见的面试题。

如何将所有节点都遍历打印出来呢?经典的方法有三种,前序遍历中序遍历后序遍历。其中,前、中、后序,表示的是节点与它的左右子树节点遍历打印的先后顺序。

  • 前序遍历是指,对于树中的任意节点来说,先打印这个节点,然后再打印它的左子树,最后打印它的右子树。
  • 中序遍历是指,对于树中的任意节点来说,先打印它的左子树,然后再打印它本身,最后打印它的右子树。
  • 后序遍历是指,对于树中的任意节点来说,先打印它的左子树,然后再打印它的右子树,最后打印这个节点本身。
img

实际上,二叉树的前、中、后序遍历就是一个递归的过程。比如,前序遍历,其实就是先打印根节点,然后再递归地打印左子树,最后递归地打印右子树。

写递归代码的关键,就是看能不能写出递推公式,而写递推公式的关键就是,如果要解决问题A,就假设子问题B、C已经解决,然后再来看如何利用B、C来解决A。所以,我们可以把前、中、后序遍历的递推公式都写出来。

前序遍历的递推公式:
preOrder(r) = print r->preOrder(r->left)->preOrder(r->right)

中序遍历的递推公式:
inOrder(r) = inOrder(r->left)->print r->inOrder(r->right)

后序遍历的递推公式:
postOrder(r) = postOrder(r->left)->postOrder(r->right)->print r

有了递推公式,代码写起来就简单多了。这三种遍历方式的代码,我都写出来了,你可以看看。

void preOrder(Node* root) {
  if (root == null) return;
  print root // 此处为伪代码,表示打印root节点
  preOrder(root->left);
  preOrder(root->right);
}

void inOrder(Node* root) {
  if (root == null) return;
  inOrder(root->left);
  print root // 此处为伪代码,表示打印root节点
  inOrder(root->right);
}

void postOrder(Node* root) {
  if (root == null) return;
  postOrder(root->left);
  postOrder(root->right);
  print root // 此处为伪代码,表示打印root节点
}

二叉树的前、中、后序遍历的递归实现是不是很简单?你知道二叉树遍历的时间复杂度是多少吗?我们一起来看看。

从我前面画的前、中、后序遍历的顺序图,可以看出来,每个节点最多会被访问两次,所以遍历操作的时间复杂度,跟节点的个数n成正比,也就是说二叉树遍历的时间复杂度是O(n)。

解答开篇&内容小结

今天,我讲了一种非线性表数据结构,树。关于树,有几个比较常用的概念你需要掌握,那就是:根节点、叶子节点、父节点、子节点、兄弟节点,还有节点的高度、深度、层数,以及树的高度。

我们平时最常用的树就是二叉树。二叉树的每个节点最多有两个子节点,分别是左子节点和右子节点。二叉树中,有两种比较特殊的树,分别是满二叉树和完全二叉树。满二叉树又是完全二叉树的一种特殊情况。

二叉树既可以用链式存储,也可以用数组顺序存储。数组顺序存储的方式比较适合完全二叉树,其他类型的二叉树用数组存储会比较浪费存储空间。除此之外,二叉树里非常重要的操作就是前、中、后序遍历操作,遍历的时间复杂度是O(n),你需要理解并能用递归代码来实现。

课后思考

  1. 给定一组数据,比如1,3,5,6,9,10。你来算算,可以构建出多少种不同的二叉树?
  2. 我们讲了三种二叉树的遍历方式,前、中、后序。实际上,还有另外一种遍历方式,也就是按层遍历,你知道如何实现吗?
特别备注

本系列非原创,文章原文摘自极客时间-数据结构算法之美,用于平常学习记录。如有侵权,请联系我删除,谢谢!

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,776评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,527评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,361评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,430评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,511评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,544评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,561评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,315评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,763评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,070评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,235评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,911评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,554评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,173评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,424评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,106评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,103评论 2 352

推荐阅读更多精彩内容