分布式ID

1、背景

在我们的业务需求中通常有需要一些唯一的ID,来记录我们某个数据的标识:

  • 某个用户的ID
  • 某个订单的单号
  • 某个信息的ID

通常我们会调研各种各样的生成策略,根据不同的业务,采取最合适的策略,下面我会讨论一下各种策略/算法,以及他们的一些优劣点。

2、UUID

UUID是通用唯一识别码(Universally Unique Identifier)的缩写,开放软件基金会(OSF)规范定义了包括网卡MAC地址、时间戳、名字空间(Namespace)、随机或伪随机数、时序等元素。利用这些元素来生成UUID。

UUID是由128位二进制组成,一般转换成十六进制,然后用String表示。在java中有个UUID类,在他的注释中我们看见这里有4种不同的UUID的生成策略:


image.png
  • randomly: 基于随机数生成UUID,由于Java中的随机数是伪随机数,其重复的概率是可以被计算出来的。这个一般我们用下面的代码获取基于随机数的UUID:


    image.png
  • time-based:基于时间的UUID,这个一般是通过当前时间,随机数,和本地Mac地址来计算出来,自带的JDK包并没有这个算法的我们在一些UUIDUtil中,比如我们的log4j.core.util,会重新定义UUID的高位和低位。


    image.png
  • DCE security:DCE安全的UUID。

  • name-based:基于名字的UUID,通过计算名字和名字空间的MD5来计算UUID。

UUID的优点:

  • 通过本地生成,没有经过网络I/O,性能较快

  • 无序,无法预测他的生成顺序。(当然这个也是他的缺点之一)

UUID的缺点:

  • 128位二进制一般转换成36位的16进制,太长了只能用String存储,空间占用较多。

  • 不能生成递增有序的数字

适用场景:UUID的适用场景可以为不担心过多的空间占用,以及不需要生成有递增趋势的数字。在Log4j里面他在UuidPatternConverter中加入了UUID来标识每一条日志。

3、数据库主键自增

大家对于唯一标识最容易想到的就是主键自增,这个也是我们最常用的方法。例如我们有个订单服务,那么把订单id设置为主键自增即可。

优点:

  • 简单方便,有序递增,方便排序和分页

缺点:

  • 分库分表会带来问题,需要进行改造。
  • 并发性能不高,受限于数据库的性能。
  • 简单递增容易被其他人猜测利用,比如你有一个用户服务用的递增,那么其他人可以根据分析注册的用户ID来得到当天你的服务有多少人注册,从而就能猜测出你这个服务当前的一个大概状况。
  • 数据库宕机服务不可用。

适用场景:
根据上面可以总结出来,当数据量不多,并发性能不高的时候这个很适合,比如一些to B的业务,商家注册这些,商家注册和用户注册不是一个数量级的,所以可以数据库主键递增。如果对顺序递增强依赖,那么也可以使用数据库主键自增。

4、Redis

熟悉Redis的同学,应该知道在Redis中有两个命令Incr,IncrBy,因为Redis是单线程的所以能保证原子性。

优点:

  • 性能比数据库好,能满足有序递增。

缺点:

  • 由于redis是内存的KV数据库,即使有AOF和RDB,但是依然会存在数据丢失,有可能会造成ID重复。
  • 依赖于redis,redis要是不稳定,会影响ID生成。

适用:由于其性能比数据库好,但是有可能会出现ID重复和不稳定,这一块如果可以接受那么就可以使用。也适用于到了某个时间,比如每天都刷新ID,那么这个ID就需要重置,通过(Incr Today),每天都会从0开始加。

5、Zookeeper

利用ZK的Znode数据版本如下面的代码,每次都不获取期望版本号也就是每次都会成功,那么每次都会返回最新的版本号:


image.png

Zookeeper这个方案用得较少,严重依赖Zookeeper集群,并且性能不是很高,所以不予推荐。

6、数据库分段+服务缓存ID

这个方法在美团的Leaf中有介绍,详情可以参考美团技术团队的发布的技术文章:Leaf——美团点评分布式ID生成系统,这个方案是将数据库主键自增进行优化。


image.png

biz_tag代表每个不同的业务,max_id代表每个业务设置的大小,step代表每个proxyServer缓存的步长。
之前我们的每个服务都访问的是数据库,现在不需要,每个服务直接和我们的ProxyServer做交互,减少了对数据库的依赖。我们的每个ProxyServer回去数据库中拿出步长的长度,比如server1拿到了1-1000,server2拿到来 1001-2000。如果用完会再次去数据库中拿。

优点:

  • 比主键递增性能高,能保证趋势递增。
  • 如果DB宕机,proxServer由于有缓存依然可以坚持一段时间。

缺点:

  • 和主键递增一样,容易被人猜测。
  • DB宕机,虽然能支撑一段时间但是仍然会造成系统不可用。

适用场景:需要趋势递增,并且ID大小可控制的,可以使用这套方案。

当然这个方案也可以通过一些手段避免被人猜测,把ID变成是无序的,比如把我们生成的数据是一个递增的long型,把这个Long分成几个部分,比如可以分成几组三位数,几组四位数,然后在建立一个映射表,将我们的数据变成无序。

7、雪花算法-Snowflake

Snowflake是Twitter提出来的一个算法,其目的是生成一个64bit的整数:


image.png
  • 1bit:一般是符号位,不做处理
  • 41bit:用来记录时间戳,这里可以记录69年,如果设置好起始时间比如今年是2018年,那么可以用到2089年,到时候怎么办?要是这个系统能用69年,我相信这个系统早都重构了好多次了。
  • 10bit:10bit用来记录机器ID,总共可以记录1024台机器,一般用前5位代表数据中心,后面5位是某个数据中心的机器ID
  • 12bit:循环位,用来对同一个毫秒之内产生不同的ID,12位可以最多记录4095个,也就是在同一个机器同一毫秒最多记录4095个,多余的需要进行等待下毫秒。

上面只是一个将64bit划分的标准,当然也不一定这么做,可以根据不同业务的具体场景来划分,比如下面给出一个业务场景:

  • 服务目前QPS10万,预计几年之内会发展到百万。
  • 当前机器三地部署,上海,北京,深圳都有。
  • 当前机器10台左右,预计未来会增加至百台。

这个时候我们根据上面的场景可以再次合理的划分62bit,QPS几年之内会发展到百万,那么每毫秒就是千级的请求,目前10台机器那么每台机器承担百级的请求,为了保证扩展,后面的循环位可以限制到1024,也就是2^10,那么循环位10位就足够了。

机器三地部署我们可以用3bit总共8来表示机房位置,当前的机器10台,为了保证扩展到百台那么可以用7bit 128来表示,时间位依然是41bit,那么还剩下64-10-3-7-41-1 = 2bit,还剩下2bit可以用来进行扩展。

image.png

适用场景:当我们需要无序不能被猜测的ID,并且需要一定高性能,且需要long型,那么就可以使用我们雪花算法。比如常见的订单ID,用雪花算法别人就发猜测你每天的订单量是多少。

7.1一个简单的Snowflake
public class IdWorker{

    private long workerId;
    private long datacenterId;
    private long sequence = 0;
    /**
     * 2018/9/29日,从此时开始计算,可以用到2089年
     */
    private long twepoch = 1538211907857L;

    private long workerIdBits = 5L;
    private long datacenterIdBits = 5L;
    private long sequenceBits = 12L;

    private long workerIdShift = sequenceBits;
    private long datacenterIdShift = sequenceBits + workerIdBits;
    private long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;
    // 得到0000000000000000000000000000000000000000000000000000111111111111
    private long sequenceMask = -1L ^ (-1L << sequenceBits);

    private long lastTimestamp = -1L;


    public IdWorker(long workerId, long datacenterId){
        this.workerId = workerId;
        this.datacenterId = datacenterId;
    }
    public synchronized long nextId() {
        long timestamp = timeGen();
        //时间回拨,抛出异常
        if (timestamp < lastTimestamp) {
            System.err.printf("clock is moving backwards.  Rejecting requests until %d.", lastTimestamp);
            throw new RuntimeException(String.format("Clock moved backwards.  Refusing to generate id for %d milliseconds",
                    lastTimestamp - timestamp));
        }

        if (lastTimestamp == timestamp) {
            sequence = (sequence + 1) & sequenceMask;
            if (sequence == 0) {
                timestamp = tilNextMillis(lastTimestamp);
            }
        } else {
            sequence = 0;
        }

        lastTimestamp = timestamp;
        return ((timestamp - twepoch) << timestampLeftShift) |
                (datacenterId << datacenterIdShift) |
                (workerId << workerIdShift) |
                sequence;
    }

    /**
     * 当前ms已经满了
     * @param lastTimestamp
     * @return
     */
    private long tilNextMillis(long lastTimestamp) {
        long timestamp = timeGen();
        while (timestamp <= lastTimestamp) {
            timestamp = timeGen();
        }
        return timestamp;
    }

    private long timeGen(){
        return System.currentTimeMillis();
    }

    public static void main(String[] args) {
        IdWorker worker = new IdWorker(1,1);
        for (int i = 0; i < 30; i++) {
            System.out.println(worker.nextId());
        }
    }

}

上面定义了雪花算法的实现,在nextId中是我们生成雪花算法的关键。

7.2防止时钟回拨

因为机器的原因会发生时间回拨,我们的雪花算法是强依赖我们的时间的,如果时间发生回拨,有可能会生成重复的ID,在我们上面的nextId中我们用当前时间和上一次的时间进行判断,如果当前时间小于上一次的时间那么肯定是发生了回拨,普通的算法会直接抛出异常,这里我们可以对其进行优化,一般分为两个情况:

  • 如果时间回拨时间较短,比如配置5ms以内,那么可以直接等待一定的时间,让机器的时间追上来。
  • 如果时间的回拨时间较长,我们不能接受这么长的阻塞等待,那么又有两个策略:
  1. 直接拒绝,抛出异常,打日志,通知RD时钟回滚。
  2. 利用扩展位,上面我们讨论过不同业务场景位数可能用不到那么多,那么我们可以把扩展位数利用起来了,比如当这个时间回拨比较长的时候,我们可以不需要等待,直接在扩展位加1。2位的扩展位允许我们有3次大的时钟回拨,一般来说就够了,如果其超过三次我们还是选择抛出异常,打日志。

通过上面的几种策略可以比较的防护我们的时钟回拨,防止出现回拨之后大量的异常出现。下面是修改之后的代码,这里修改了时钟回拨的逻辑:


image.png

最后

本文分析了各种生产分布式ID的算法的原理,以及他们的适用场景,相信你已经能为自己的项目选择好一个合适的分布式ID生成策略了。没有一个策略是完美的,只有适合自己的才是最好的。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,254评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,875评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,682评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,896评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,015评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,152评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,208评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,962评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,388评论 1 304
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,700评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,867评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,551评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,186评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,901评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,142评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,689评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,757评论 2 351

推荐阅读更多精彩内容