Drools中RETE算法详解

1.相关概念

  • Fact(事实):对象之间及对象属性之间的关系
  • Rule(规则):是由条件和结论构成的推理语句,一般表示为if…Then。一个规则的if部分称为LHS(left-hand-side),then部分称为RHS(right hand side)。
  • Module(模式):就是指IF语句的条件。这里IF条件可能是有几个更小的条件组成的大条件。模式就是指的不能在继续分割下去的最小的原子条件。

2.RETE网络节点类型

image.png
  • Root Node:所有对象进入网络的入口,在一个网络中只有一个根节点。借用Rete算法经典的示例:

  • 1-input node:可分为ObjectTypeNode, AlphaNode, LeftInputAdapterNode等。

Object Type Node:事实从根节点进入Rete网络后,会立即进入Object Type Node节点。Object Type Node提供了按对象类型过滤对象的能力,通过此类节点可使规则引擎不做额外的工作。Cheese类型的事实进入网络后,只需经过类型为Cheese的Object Type Node之后的节点。如下图
image.png
Alpha Node:Alpha 节点是规则的条件部分的一个模式。通常用于评估字面的条件。如下图,两个Alpha Node 分别评估了Cheese事实的name和strength属性。
image.png
  • 2-input node(Beta Node): 拥有两个输入的节点。Beta Node 节点用于比较两个对象。两个对象可能是相同或不同的类型。Beta Node主要包含Join Node 和 Not Node两种类型。
    Join Node:用作连接(join)操作的节点,相当于数据库的表连接操作。
    NotNode:根据右边输入对左边输入的对象数组进行过滤,两个 NotNode 可以完成‘ exists ’检查。
  • Terminal Node:到达一个终端节点,表示单条规则匹配了所有的条件,网络中有多个终端节点。当单条规则中有or时,也会产生多个终端节点。

3.完整示例

  • 规则文件
rule1
when
Cheese($cheddar : name == "cheddar" )
$person : Person( favouriteCheese == $cheddar )
then
System.out.println($person.getName() + " likes cheddar" );
end
rule2
when
Cheese( $cheddar : name == "cheddar" )
$person : Person( favouriteCheese != $cheddar )
then
System.out.println($person.getName() + " does not like cheddar" );
end
Rete网络:
image.png

从图上可以看到,编译后的RETE网络中,AlphaNode是共享的,而BetaNode不是共享的。两条规则的BetaNode的不同。然后这两条规则有各自的Terminal Node。

为何RETE算法效率高

RETE算法优于普通代码逻辑

如:Segment,Hotel,ReservedLounge类型的产品分别有10个。按照一般的程序处理逻辑,我们要写三个For循环去处理三类产品的打包操作,计算次数为三类产品数目的笛卡尔积级别的,即:101010 =1000。

而RETE算法采用空间换时间的策略,将中间的计算结果缓存下来(Alpha Memory,Beta Memory)。计算次数为10+10+10(Alpha节点计算次数)加上2次join/projection操作(Beta节点计算次数)。基于内存中的数据做join/projection/selection操作效率很高。

RETE算法的缺点

RETE算法使用了存储区存储已计算的中间结果,以空间换取时间,从而加快系统的速度。然而存储区根据规则的条件于事实的数目成指数级增长,极端情况下会耗尽系统资源。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,504评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,434评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,089评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,378评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,472评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,506评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,519评论 3 413
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,292评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,738评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,022评论 2 329
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,194评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,873评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,536评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,162评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,413评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,075评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,080评论 2 352

推荐阅读更多精彩内容