前言
数据可视化的第三方库挺多的,这里我主要推荐三个,分别是 Pygal、Bokeh、Plotly,废话不多说,直接上~~
推荐
数据可视化的库有挺多的,这里推荐几个比较常用的:
Matplotlib
Pygal
Bokeh
Seaborn
Ggplot
Plotly
Pyechart
Pygal
pygal官网地址(http://www.pygal.org/en/stable/)
安装pygal模块
pygal模块的安装非常简单,只需输入一行pip命令即可
1 pip install pygal
安装完成:
pygal模块介绍
pygal是Python的第三方库,他的主要功能就是数据可视化,即将数字转化成图表的形式来呈现,它提供的图表样式有柱状图、折线图、饼状图、雷达图......
柱状图
单列柱状图
import pygal
view = pygal.Bar()
#图表名
view.title = '柱状图'
#添加数据
view.add('numbers', [0,2,4,6,8,10])
#在浏览器中查看
#view.render_in_browser()
#保存为view.svg(也可以保存为jpg)
view.render_to_file('view.svg')
效果图:
注意:svg图片用系统自带的图片查看器打开可能会显示全黑色,可以尝试使用Google浏览器打开
多列柱状图
#添加数据
view.add('numbers', [0,2,4,6,8,10])
view.add('numbers_2', [0,1,3,5,7,9])
堆叠柱状图
view = pygal.StackedBar()
横向柱状图
view = pygal.HorizontalStackedBar()
折线图
简单折线图
import pygal
view = pygal.Line()
#图表名
view.title = '折线图'
#添加数据
view.add('numbers', [0,2,4,6,8,10])
view.add('numbers_2', [0,1,3,5,7,9])
#在浏览器中查看
#view.render_in_browser()
#保存为view.svg(也可以保存为jpg)
view.render_to_file('view.svg')
效果图:
纵向折线图
view = pygal.HorizontalLine()
堆叠折线图
view = pygal.StackedLine(fill=True)
饼状图
简单饼状图
import pygal
view = pygal.Pie()
#图表名
view.title = '饼状图'
#添加数据
view.add('A', 31)
view.add('B', 55)
view.add('C', 14)
#保存为view.svg(也可以保存为jpg)
view.render_to_file('view.svg')
效果图:
多级饼状图
#添加数据
view.add('A', [31,25])
view.add('B', [55,38])
view.add('C', [14,37])
圆环图
#设置空心圆半径
view = pygal.Pie(inner_radius=0.4)
半圆图
view = pygal.Pie(half_pie=True)
雷达图
基础雷达图
import pygal
view = pygal.Radar()
#图表名
view.title = '雷达图'
#添加数据(可以为任意个)
view.add('A', [31,56,34,67,34])
view.add('B', [23,18,57,45,35])
view.add('C', [14,45,76,34,76])
#保存为view.svg(也可以保存为jpg)
view.render_to_file('view.svg')
效果图:
plotly
plotly 文档地址(https://plot.ly/python/#financial-charts)
Plotly 是一款用来做数据分析和可视化的在线平台,功能非常强大,可以在线绘制很多图形比如条形图、散点图、饼图、直方图等等。而且还是支持在线编辑,以及多种语言python、javascript、matlab、R等许多API。它在python中使用也很简单,直接用pip install plotly就可以了。推荐最好在jupyter notebook中使用,pycharm操作不是很方便。使用Plotly可以画出很多媲美Tableau的高质量图:
这里尝试做了折线图、散点图和直方图,代码如下:
首先导入库
from plotly.graph_objs import Scatter,Layout
import plotly
import plotly.offline as py
import numpy as np
import plotly.graph_objs as go
#setting offilne
plotly.offline.init_notebook_mode(connected=True)
上面几行代码主要是引用一些库,plotly有在线和离线两种模式,在线模式需要有账号可以云编辑。我选用的离线模式,plotly设置为offline模式就可以直接在notebook里面显示了。
1.制作折线图
N = 100
random_x = np.linspace(0,1,N)
random_y0 = np.random.randn(N)+5
random_y1 = np.random.randn(N)
random_y2 = np.random.randn(N)-5
#Create traces
trace0 = go.Scatter(
x = random_x,
y = random_y0,
mode = 'markers',
name = 'markers'
)
trace1 = go.Scatter(
x = random_x,
y = random_y1,
mode = 'lines+markers',
name = 'lines+markers'
)
trace2 = go.Scatter(
x = random_x,
y = random_y2,
mode = 'lines',
name = 'lines'
)
data = [trace0,trace1,trace2]
py.iplot(data)
随机设置4个参数,一个x轴的数字和三个y轴的随机数据,制作出三种不同类型的图。trace0是markers,trace1是lines和markers,trace3是lines。然后把三种图放在data这个列表里面,调用py.iplot(data)即可。
绘制的图片系统默认配色也挺好看的~
2.制作散点图
trace1 = go.Scatter(
y = np.random.randn(500),
mode = 'markers',
marker = dict(
size = 16,
color = np.random.randn(500),
colorscale = 'Viridis',
showscale = True
)
)
data = [trace1]
py.iplot(data)
把mode设置为markers就是散点图,然后marker里面设置一组参数,比如颜色的随机范围,散点的大小,还有图例等等。
3.直方图
trace0 = go.Bar(
x = ['Jan','Feb','Mar','Apr', 'May','Jun',
'Jul','Aug','Sep','Oct','Nov','Dec'],
y = [20,14,25,16,18,22,19,15,12,16,14,17],
name = 'Primary Product',
marker=dict(
color = 'rgb(49,130,189)'
)
)
trace1 = go.Bar(
x = ['Jan','Feb','Mar','Apr', 'May','Jun',
'Jul','Aug','Sep','Oct','Nov','Dec'],
y = [19,14,22,14,16,19,15,14,10,12,12,16],
name = 'Secondary Product',
marker=dict(
color = 'rgb(204,204,204)'
)
)
data = [trace0,trace1]
py.iplot(data)
Bokeh
条形图
这配色看着还挺舒服的,比 pyecharts 条形图的配色好看一点。
from bokeh.io import show, output_file
from bokeh.models import ColumnDataSource
from bokeh.palettes import Spectral6
from bokeh.plotting import figure
output_file("colormapped_bars.html")# 配置输出文件名
fruits = ['Apples', '魅族', 'OPPO', 'VIVO', '小米', '华为'] # 数据
counts = [5, 3, 4, 2, 4, 6] # 数据
source = ColumnDataSource(data=dict(fruits=fruits, counts=counts, color=Spectral6))
p = figure(x_range=fruits, y_range=(0,9), plot_height=250, title="Fruit Counts",
toolbar_location=None, tools="")# 条形图配置项
p.vbar(x='fruits', top='counts', width=0.9, color='color', legend="fruits", source=source)
p.xgrid.grid_line_color = None # 配置网格线颜色
p.legend.orientation = "horizontal" # 图表方向为水平方向
p.legend.location = "top_center"
show(p) # 展示图表
年度条形图
可以对比不同时间点的量。
from bokeh.io import show, output_file
from bokeh.models import ColumnDataSource, FactorRange
from bokeh.plotting import figure
output_file("bars.html") # 输出文件名
fruits = ['Apple', '魅族', 'OPPO', 'VIVO', '小米', '华为'] # 参数
years = ['2015', '2016', '2017'] # 参数
data = {'fruits': fruits,
'2015': [2, 1, 4, 3, 2, 4],
'2016': [5, 3, 3, 2, 4, 6],
'2017': [3, 2, 4, 4, 5, 3]}
x = [(fruit, year) for fruit in fruits for year in years]
counts = sum(zip(data['2015'], data['2016'], data['2017']), ())
source = ColumnDataSource(data=dict(x=x, counts=counts))
p = figure(x_range=FactorRange(*x), plot_height=250, title="Fruit Counts by Year",
toolbar_location=None, tools="")
p.vbar(x='x', top='counts', width=0.9, source=source)
p.y_range.start = 0
p.x_range.range_padding = 0.1
p.xaxis.major_label_orientation = 1
p.xgrid.grid_line_color = None
show(p)
饼图
from collections import Counter
from math import pi
import pandas as pd
from bokeh.io import output_file, show
from bokeh.palettes import Category20c
from bokeh.plotting import figure
from bokeh.transform import cumsum
output_file("pie.html")
x = Counter({
'中国': 157,
'美国': 93,
'日本': 89,
'巴西': 63,
'德国': 44,
'印度': 42,
'意大利': 40,
'澳大利亚': 35,
'法国': 31,
'西班牙': 29
})
data = pd.DataFrame.from_dict(dict(x), orient='index').reset_index().rename(index=str, columns={0:'value', 'index':'country'})
data['angle'] = data['value']/sum(x.values()) * 2*pi
data['color'] = Category20c[len(x)]
p = figure(plot_height=350, title="Pie Chart", toolbar_location=None,
tools="hover", tooltips="@country: @value")
p.wedge(x=0, y=1, radius=0.4,
start_angle=cumsum('angle', include_zero=True), end_angle=cumsum('angle'),
line_color="white", fill_color='color', legend='country', source=data)
p.axis.axis_label=None
p.axis.visible=False
p.grid.grid_line_color = None
show(p)
条形图
from bokeh.io import output_file, show
from bokeh.models import ColumnDataSource
from bokeh.palettes import GnBu3, OrRd3
from bokeh.plotting import figure
output_file("stacked_split.html")
fruits = ['Apples', 'Pears', 'Nectarines', 'Plums', 'Grapes', 'Strawberries']
years = ["2015", "2016", "2017"]
exports = {'fruits': fruits,
'2015': [2, 1, 4, 3, 2, 4],
'2016': [5, 3, 4, 2, 4, 6],
'2017': [3, 2, 4, 4, 5, 3]}
imports = {'fruits': fruits,
'2015': [-1, 0, -1, -3, -2, -1],
'2016': [-2, -1, -3, -1, -2, -2],
'2017': [-1, -2, -1, 0, -2, -2]}
p = figure(y_range=fruits, plot_height=250, x_range=(-16, 16), title="Fruit import/export, by year",
toolbar_location=None)
p.hbar_stack(years, y='fruits', height=0.9, color=GnBu3, source=ColumnDataSource(exports),
legend=["%s exports" % x for x in years])
p.hbar_stack(years, y='fruits', height=0.9, color=OrRd3, source=ColumnDataSource(imports),
legend=["%s imports" % x for x in years])
p.y_range.range_padding = 0.1
p.ygrid.grid_line_color = None
p.legend.location = "top_left"
p.axis.minor_tick_line_color = None
p.outline_line_color = None
show(p)
散点图
from bokeh.plotting import figure, output_file, show
output_file("line.html")
p = figure(plot_width=400, plot_height=400)
p.circle([1, 2, 3, 4, 5], [6, 7, 2, 4, 5], size=20, color="navy", alpha=0.5)
show(p)
六边形图
这两天,马蜂窝刚被发现数据造假,这不,与马蜂窝应应景。
import numpy as np
from bokeh.io import output_file, show
from bokeh.plotting import figure
from bokeh.util.hex import axial_to_cartesian
output_file("hex_coords.html")
q = np.array([0, 0, 0, -1, -1, 1, 1])
r = np.array([0, -1, 1, 0, 1, -1, 0])
p = figure(plot_width=400, plot_height=400, toolbar_location=None) #
p.grid.visible = False # 配置网格是否可见
p.hex_tile(q, r, size=1, fill_color=["firebrick"] * 3 + ["navy"] * 4,
line_color="white", alpha=0.5)
x, y = axial_to_cartesian(q, r, 1, "pointytop")
p.text(x, y, text=["(%d, %d)" % (q, r) for (q, r) in zip(q, r)],
text_baseline="middle", text_align="center")
show(p)
环比条形图
这个实现挺厉害的,看了一眼就吸引了我。我在代码中都做了一些注释,希望对你理解有帮助。注:圆心为正中央,即直角坐标系中标签为(0,0)的地方。
from collections import OrderedDict
from math import log, sqrt
import numpy as np
import pandas as pd
from six.moves import cStringIO as StringIO
from bokeh.plotting import figure, show, output_file
antibiotics = """
bacteria, penicillin, streptomycin, neomycin, gram
结核分枝杆菌, 800, 5, 2, negative
沙门氏菌, 10, 0.8, 0.09, negative
变形杆菌, 3, 0.1, 0.1, negative
肺炎克雷伯氏菌, 850, 1.2, 1, negative
布鲁氏菌, 1, 2, 0.02, negative
铜绿假单胞菌, 850, 2, 0.4, negative
大肠杆菌, 100, 0.4, 0.1, negative
产气杆菌, 870, 1, 1.6, negative
白色葡萄球菌, 0.007, 0.1, 0.001, positive
溶血性链球菌, 0.001, 14, 10, positive
草绿色链球菌, 0.005, 10, 40, positive
肺炎双球菌, 0.005, 11, 10, positive
"""
drug_color = OrderedDict([# 配置中间标签名称与颜色
("盘尼西林", "#0d3362"),
("链霉素", "#c64737"),
("新霉素", "black"),
])
gram_color = {
"positive": "#aeaeb8",
"negative": "#e69584",
}
# 读取数据
df = pd.read_csv(StringIO(antibiotics),
skiprows=1,
skipinitialspace=True,
engine='python')
width = 800
height = 800
inner_radius = 90
outer_radius = 300 - 10
minr = sqrt(log(.001 * 1E4))
maxr = sqrt(log(1000 * 1E4))
a = (outer_radius - inner_radius) / (minr - maxr)
b = inner_radius - a * maxr
def rad(mic):
return a * np.sqrt(np.log(mic * 1E4)) + b
big_angle = 2.0 * np.pi / (len(df) + 1)
small_angle = big_angle / 7
# 整体配置
p = figure(plot_width=width, plot_height=height, title="",
x_axis_type=None, y_axis_type=None,
x_range=(-420, 420), y_range=(-420, 420),
min_border=0, outline_line_color="black",
background_fill_color="#f0e1d2")
p.xgrid.grid_line_color = None
p.ygrid.grid_line_color = None
# annular wedges
angles = np.pi / 2 - big_angle / 2 - df.index.to_series() * big_angle #计算角度
colors = [gram_color[gram] for gram in df.gram] # 配置颜色
p.annular_wedge(
0, 0, inner_radius, outer_radius, -big_angle + angles, angles, color=colors,
)
# small wedges
p.annular_wedge(0, 0, inner_radius, rad(df.penicillin),
-big_angle + angles + 5 * small_angle, -big_angle + angles + 6 * small_angle,
color=drug_color['盘尼西林'])
p.annular_wedge(0, 0, inner_radius, rad(df.streptomycin),
-big_angle + angles + 3 * small_angle, -big_angle + angles + 4 * small_angle,
color=drug_color['链霉素'])
p.annular_wedge(0, 0, inner_radius, rad(df.neomycin),
-big_angle + angles + 1 * small_angle, -big_angle + angles + 2 * small_angle,
color=drug_color['新霉素'])
# 绘制大圆和标签
labels = np.power(10.0, np.arange(-3, 4))
radii = a * np.sqrt(np.log(labels * 1E4)) + b
p.circle(0, 0, radius=radii, fill_color=None, line_color="white")
p.text(0, radii[:-1], [str(r) for r in labels[:-1]],
text_font_size="8pt", text_align="center", text_baseline="middle")
# 半径
p.annular_wedge(0, 0, inner_radius - 10, outer_radius + 10,
-big_angle + angles, -big_angle + angles, color="black")
# 细菌标签
xr = radii[0] * np.cos(np.array(-big_angle / 2 + angles))
yr = radii[0] * np.sin(np.array(-big_angle / 2 + angles))
label_angle = np.array(-big_angle / 2 + angles)
label_angle[label_angle < -np.pi / 2] += np.pi # easier to read labels on the left side
# 绘制各个细菌的名字
p.text(xr, yr, df.bacteria, angle=label_angle,
text_font_size="9pt", text_align="center", text_baseline="middle")
# 绘制圆形,其中数字分别为 x 轴与 y 轴标签
p.circle([-40, -40], [-370, -390], color=list(gram_color.values()), radius=5)
# 绘制文字
p.text([-30, -30], [-370, -390], text=["Gram-" + gr for gr in gram_color.keys()],
text_font_size="7pt", text_align="left", text_baseline="middle")
# 绘制矩形,中间标签部分。其中 -40,-40,-40 为三个矩形的 x 轴坐标。18,0,-18 为三个矩形的 y 轴坐标
p.rect([-40, -40, -40], [18, 0, -18], width=30, height=13,
color=list(drug_color.values()))
# 配置中间标签文字、文字大小、文字对齐方式
p.text([-15, -15, -15], [18, 0, -18], text=list(drug_color),
text_font_size="9pt", text_align="left", text_baseline="middle")
output_file("burtin.html", title="burtin.py example")
show(p)
元素周期表
元素周期表,这个实现好牛逼啊,距离初三刚开始学化学已经很遥远了,想当年我还是化学课代表呢!由于基本用不到化学了,这里就不实现了。
大礼包详见个人主页简介或者私信获取