并发框架Disruptor
1. Disruptor概述
1.1 背景
Disruptor是英国外汇交易公司LMAX开发的一个高性能队列,研发的初衷是解决内存队列的延迟问题(在性能测试中发现竟然与I/O操作处于同样的数量级),基于Disruptor开发的系统单线程能支撑每秒600万订单,2010年在QCon演讲后,获得了业界关注,2011年,企业应用软件专家Martin Fowler专门撰写长文介绍。同年它还获得了Oracle官方的Duke大奖。
目前,包括Apache Storm、Camel、Log4j 2在内的很多知名项目都应用了Disruptor以获取高性能。
需要特别指出的是,这里所说的队列是系统内部的内存队列,而不是Kafka这样的分布式队列。
有界无锁 高并发队列
1.2 什么是Disruptor
Disruptor是用于一个JVM中多个线程之间的消息队列,作用与ArrayBlockingQueue有相似之处,但是Disruptor从功能、性能都远好于ArrayBlockingQueue,当多个线程之间传递大量数据或对性能要求较高时,可以考虑使用Disruptor作为ArrayBlockingQueue的替代者。
官方也对Disruptor和ArrayBlockingQueue的性能在不同的应用场景下做了对比,目测性能只有有5~10倍左右的提升。
1.3 为什么使用Disruptor
传统阻塞的队列使用锁保证线程安全,而锁通过操作系统内核上下文切换实现,会暂停线程去等待锁,直到锁释放。
执行这样的上下文切换,会丢失之前保存的数据和指令。由于消费者和生产者之间的速度差异,队列总是接近满或者空的状态,这种状态会导致高水平的写入争用。
1.3.1 传统队列问题
首先这里说的队列也仅限于Java内部的消息队列
队列 | 有界性 | 锁 | 结构 | 队列类型 |
---|---|---|---|---|
ArrayBlockingQueue | 有界 | 加锁 | 数组 | 阻塞 |
LinkedBlockingQueue | 可选 | 加锁 | 链表 | 阻塞 |
ConcurrentLinkedQueue | 无界 | 无锁 | 链表 | 非阻塞 |
LinkedTransferQueue | 无界 | 无锁 | 链表 | 阻塞 |
PriorityBlockingQueue | 无界 | 加锁 | 堆 | 阻塞 |
DelayQueue | 无界 | 加锁 | 堆 | 阻塞 |
1.3.2 Disruptor应用场景
参考使用到disruptor的一些框架.
1.3.2.1 log4j2
Log4j2异步日志使用到了disruptor, 日志一般是有缓冲区, 满了才写到文件, 增量追加文件结合NIO等应该也比较快, 所以无论是EventHandler还是WorkHandler处理应该延迟比较小的, 写的文件也不多, 所以场景是比较合适的。
1.3.2.2 Jstorm
在流处理中不同线程中数据交换,数据计算可能蛮多内存中计算, 流计算快进快出,disruptor应该不错的选择。
1.3.2.3 百度uid-generator
部分使用Ring buffer和去伪共享等思路缓存已生成的uid, 应该也部分参考了disruptor吧。
1.4 Disruptor 的核心概念
先从了解 Disruptor 的核心概念开始,来了解它是如何运作的。下面介绍的概念模型,既是领域对象,也是映射到代码实现上的核心对象。
1.4.1 Ring Buffer
Disruptor中的数据结构,用于存储生产者生产的数据
如其名,环形的缓冲区。曾经 RingBuffer 是 Disruptor 中的最主要的对象,但从3.0版本开始,其职责被简化为仅仅负责对通过 Disruptor 进行交换的数据(事件)进行存储和更新。在一些更高级的应用场景中,Ring Buffer 可以由用户的自定义实现来完全替代。
1.4.2 Sequence
序号,在Disruptor框架中,任何地方都有序号
生产者生产的数据放在RingBuffer中的哪个位置,消费者应该消费哪个位置的数据,RingBuffer中的某个位置的数据是什么,这些都是由这个序号来决定的。这个序号可以简单的理解为一个AtomicLong类型的变量。其使用了padding的方法去消除缓存的伪共享问题。
1.4.3 Sequencer
序号生成器,这个类主要是用来协调生产者的
在生产者生产数据的时候,Sequencer会产生一个可用的序号(Sequence),然后生产者就就知道数据放在环形队列的那个位置了。
Sequencer是Disruptor的真正核心,此接口有两个实现类 SingleProducerSequencer、MultiProducerSequencer ,它们定义在生产者和消费者之间快速、正确地传递数据的并发算法。
1.4.4 Sequence Barrier
序号屏障
我们都知道,消费者在消费数据的时候,需要知道消费哪个位置的数据。消费者总不能自己想取哪个数据消费,就取哪个数据消费吧。这个SequencerBarrier起到的就是这样一个“栅栏”般的阻隔作用。你消费者想消费数据,得,我告诉你一个序号(Sequence),你去消费那个位置上的数据。要是没有数据,就好好等着吧
1.4.5 Wait Strategy
Wait Strategy决定了一个消费者怎么等待生产者将事件(Event)放入Disruptor中。
设想一种这样的情景:生产者生产的非常慢,而消费者消费的非常快。那么必然会出现数据不够的情况,这个时候消费者怎么进行等待呢?WaitStrategy就是为了解决问题而诞生的。
1.4.6 Event
从生产者到消费者传递的数据叫做Event。它不是一个被 Disruptor 定义的特定类型,而是由 Disruptor 的使用者定义并指定。
1.4.7 EventHandler
Disruptor 定义的事件处理接口,由用户实现,用于处理事件,是 Consumer 的真正实现。
1.4.8 Producer
即生产者,只是泛指调用 Disruptor 发布事件的用户代码,Disruptor 没有定义特定接口或类型。
1.5 Disruptor特性
Disruptor其实就像一个队列一样,用于在不同的线程之间迁移数据,但是Disruptor也实现了一些其他队列没有的特性,如:
- 同一个“事件”可以有多个消费者,消费者之间既可以并行处理,也可以相互依赖形成处理的先后次序(形成一个依赖图);
- 预分配用于存储事件内容的内存空间;
- 针对极高的性能目标而实现的极度优化和无锁的设计;
2. Disruptor入门
我们使用一个简单的例子来体验一下Disruptor,生产者会传递一个long类型的值到消费者,消费者接受到这个值后会打印出这个值。
2.1 添加依赖
<dependency>
<groupId>com.lmax</groupId>
<artifactId>disruptor</artifactId>
<version>3.4.2</version>
</dependency>
2.2 Disruptor API
Disruptor 的 API 十分简单,主要有以下几个步骤
2.2.1 定义事件
首先创建一个
LongEvent
类,这个类将会被放入环形队列中作为消息内容。事件(Event)就是通过 Disruptor 进行交换的数据类型。
public class LongEvent {
private long value;
public void set(long value) {
this.value = value;
}
public long getValue() {
return value;
}
}
2.2.2 定义事件工厂
为了使用Disruptor的内存预分配event,我们需要定义一个EventFactory
事件工厂(Event Factory)定义了如何实例化前面第1步中定义的事件(Event),需要实现接口 com.lmax.disruptor.EventFactory\<T\>。
Disruptor 通过 EventFactory 在 RingBuffer 中预创建 Event 的实例。
一个 Event 实例实际上被用作一个“数据槽”,发布者发布前,先从 RingBuffer 获得一个 Event 的实例,然后往 Event 实例中填充数据,之后再发布到 RingBuffer 中,之后由 Consumer 获得该 Event 实例并从中读取数据。
public class LongEventFactory implements EventFactory<LongEvent> {
public LongEvent newInstance() {
return new LongEvent();
}
}
2.2.3 定义事件处理的具体实现
为了让消费者处理这些事件,所以我们这里定义一个事件处理器,负责打印event
通过实现接口 com.lmax.disruptor.EventHandler<T> 定义事件处理的具体实现。
public class LongEventHandler implements EventHandler<LongEvent> {
public void onEvent(LongEvent event, long sequence, boolean endOfBatch) {
//CommonUtils.accumulation();
System.out.println("consumer:" + Thread.currentThread().getName() + " Event: value=" + event.getValue() + ",sequence=" + sequence);
}
}
2.2.4 指定等待策略
Disruptor 定义了 com.lmax.disruptor.WaitStrategy 接口用于抽象 Consumer 如何等待新事件,这是策略模式的应用
WaitStrategy YIELDING_WAIT = new YieldingWaitStrategy();
2.2.5 启动 Disruptor
注意ringBufferSize的大小必须是2的N次方
// 指定事件工厂
LongEventFactory factory = new LongEventFactory();
// 指定 ring buffer字节大小, 必须是2的N次方
int bufferSize = 1024;
//单线程模式,获取额外的性能
Disruptor<LongEvent> disruptor = new Disruptor<LongEvent>(factory,
bufferSize, Executors.defaultThreadFactory(),
ProducerType.SINGLE,
new YieldingWaitStrategy());
//设置事件业务处理器---消费者
disruptor.handleEventsWith(new LongEventHandler());
//启动disruptor线程
disruptor.start();
2.2.6 使用Translators发布事件
在Disruptor的3.0版本中,由于加入了丰富的Lambda风格的API,可以用来帮组开发人员简化流程。所以在3.0版本后首选使用Event Publisher/Event Translator来发布事件。
public class LongEventProducerWithTranslator {
private final RingBuffer<LongEvent> ringBuffer;
public LongEventProducerWithTranslator(RingBuffer<LongEvent> ringBuffer) {
this.ringBuffer = ringBuffer;
}
private static final EventTranslatorOneArg<LongEvent, Long> TRANSLATOR =
new EventTranslatorOneArg<LongEvent, Long>() {
public void translateTo(LongEvent event, long sequence, Long data) {
event.set(data);
}
};
public void onData(Long data) {
ringBuffer.publishEvent(TRANSLATOR, data);
}
}
2.2.7 关闭 Disruptor
disruptor.shutdown();//关闭 disruptor,方法会堵塞,直至所有的事件都得到处理
2.3 代码整合
2.3.1 LongEventMain
消费者-生产者启动类,其依靠构造Disruptor对象,调用start()方法完成启动线程。Disruptor 需要ringbuffer环,消费者数据处理工厂,WaitStrategy等
ByteBuffer 类字节buffer,用于包装消息。
ProducerType.SINGLE为单线程 ,可以提高性能
public class LongEventMain {
public static void main(String[] args) {
// 指定事件工厂
LongEventFactory factory = new LongEventFactory();
// 指定 ring buffer字节大小, 必须是2的N次方
int bufferSize = 1024;
//单线程模式,获取额外的性能
Disruptor<LongEvent> disruptor = new Disruptor<LongEvent>(factory,
bufferSize, Executors.defaultThreadFactory(),
ProducerType.SINGLE,
new YieldingWaitStrategy());
//设置事件业务处理器---消费者
disruptor.handleEventsWith(new LongEventHandler());
//启动disruptor线程
disruptor.start();
// 获取 ring buffer环,用于接取生产者生产的事件
RingBuffer<LongEvent> ringBuffer = disruptor.getRingBuffer();
//为 ring buffer指定事件生产者
LongEventProducerWithTranslator producer = new LongEventProducerWithTranslator(ringBuffer);
//循环遍历
for (int i = 0; i < 100; i++) {
//获取一个随机数
long value = (long) ((Math.random() * 1000000) + 1);
//发布数据
producer.onData(value);
}
//停止disruptor线程
disruptor.shutdown();
}
}
2.3.2 运行测试
测试结果
consumer:pool-1-thread-1 Event: value=579797,sequence=0
consumer:pool-1-thread-1 Event: value=974942,sequence=1
consumer:pool-1-thread-1 Event: value=978977,sequence=2
consumer:pool-1-thread-1 Event: value=398080,sequence=3
consumer:pool-1-thread-1 Event: value=867251,sequence=4
consumer:pool-1-thread-1 Event: value=796707,sequence=5
consumer:pool-1-thread-1 Event: value=786555,sequence=6
consumer:pool-1-thread-1 Event: value=182193,sequence=7
.....
Event: value = 为消费者接收到的数据,sequence为数据在ringbuffer环的位置。
本文由育博学谷狂野架构师发布
如果本文对您有帮助,欢迎关注和点赞;如果您有任何建议也可留言评论或私信,您的支持是我坚持创作的动力
转载请注明出处!