媒体技术变革与探索(1):技术对传播的影响

每秒完成8000张海报,一天内完成4000万张设计图,为双11提供近4亿张海报支持,这是今年双11的部分数据。马爸爸除了持续颠覆我们对全民消费能力的认知外,还用阿里的人工智能“鲁班”塑造了图片传播的全新体验。

双11之后的2017腾讯媒体+峰会上,Dreamwriter负责写稿,微信智聆和翻译君负责语音转文字和同声传译,三个AI撑起全场。如果说以前的机器撰写稿只是客观信息的堆砌,那么Dreamwriter已经可以配合机器实时翻译,解读人类演说的逻辑,并且自动剪辑小视频和自动配图,形成素材丰富且逻辑完整的内容。

作为土壤,以AI为代表的智能技术已经开始在媒体产业深化落地,媒体从技术探索走向工程化和产品化,并不断将技术分解为适用媒体场景的模式创新。而令人惊讶的是,这些变化发生的悄无声息,大家看到的只是最终的呈现。



传播加速器

今年8月8日21时19分,四川阿坝州九寨沟县发生了7.0级地震。第一时间发布消息的,是中国地震台网一款公测的“地震信息播报机器人”,用时25秒;南方都市报的机器人“小南”,上岗后1秒完成关于春运车票动态信息。

人们看到的只是速度的加快和效率的提升,而事实上,写稿机器人背后涉及到非常复杂的技术,比如自然语言处理、文本复述技术、文本信息推荐技术、撰文技术、NLP、机器学习、深度学习等等。

AI的新闻生产并不依赖现场采集取材成稿,而主要通过数据挖掘、逻辑分析、模板框架的组合优化生成。从机器写稿的表现来看,尽管目前AI尚不具备人工编辑的深度和个性化写作,但是机器的学习能力很强,AlphaGo的迭代速度大家也有目共睹。


“套路”是最高效的成长路径

文章开头提到的阿里人工智能“鲁班”,正是用“套路”完成了信息的标准化和生产效率的提升。

阿里巴巴AI设计项目负责人曾解释过“鲁班”的几个关键技术:

一是图像算法“抠图”。以前都是设计师给商品抠图后再做设计,现在就是让机器来做这个事情,处理海量的商品自动抠图。

二是把设计变成数据。利用机器把商品、文字和设计主题进行在线合成,这样每张广告图片就带上了商品信息,可以根据消费者偏好进行个性化投放。

三是让机器学习设计。靠“人肉设计模板”度过了第一个阶段,后来产品开发的图像算法专家加入进来,主导整个智能设计的算法框架。

在利用关键技术的基础上,还通过让机器理解设计构成、建立元素中心、生成系统和评估系统等核心步骤,完成整个的设计和生成。


介质与信息交互方式的变革

2010年前,北京地铁站入口有卖报纸的,出口有收报纸的,但2011年之后,这些人逐渐消失了。

到了2017年,中国网民每天的资讯消费时长已经达到67分钟,然而劣质信息的泛滥,让人们普遍有两个感受:一方面,移动端的信息冗余让人们不堪重负;另一方面,每个人真正关心的事情总是无法第一时间完成触达。

算法和机器学习正在改善这些状况。强大的信息整理归纳和理解能力,将会大规模改变信息的交互方式,也会抹平信息的鸿沟,减轻人脑的负担。

很多资讯推送APP,比如今日头条、网易新闻客户端等,它们已经不是媒体平台,而是基于机器学习的个性化推荐引擎。

实际上,从终身学习的角度来看,个性化引擎和社交化的交互方式,不仅符合建构主义的学习理论,也让个体的知识建构来的更轻松可行。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,607评论 6 507
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,239评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,960评论 0 355
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,750评论 1 294
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,764评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,604评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,347评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,253评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,702评论 1 315
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,893评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,015评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,734评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,352评论 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,934评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,052评论 1 270
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,216评论 3 371
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,969评论 2 355