limma做RNAseq差异分析

limma是一个很强大的用于分析芯片的R包,也可以用于RNA-Seq的差异分析
以两个组比较为例:首先输入count表达矩阵,这里也跟其他差异分析R包一样,不要输入已经标准化的数据。
本文主要参考:https://www.bioinfo-scrounger.com/archives/115/

library(limma)
library(edge)

counts <- read.csv("raw_counts.csv",row.names = 1)
#Creates a DGEList
dge_counts <- DGEList(counts = counts,remove.zeros = T)
#Calculate normalization factors to scale the raw library sizes.
#用TMM进行标准化
tmm_counts <- calcNormFactors(dge_counts)
#count进行标准化以及转化为log2的值
logCPM_counts <- cpm(tmm_counts , log=TRUE)

制作分组矩阵

#设置分组信息
group_list <- factor(c(rep("control",2), rep("treat",2)))
design <- model.matrix(~group_list)
colnames(design) <- levels(group_list)
rownames(design) <- colnames(counts)

为了避免文库大小在样本间变化的影响,可以使用limma的voom方法进行处理

y = voom(logCPM_counts, design, plot = T)

对voom的描述

Transform count data to log2-counts per million (logCPM), estimate the mean-variance relationship and use this to compute appropriate observation-level weights. The data are then ready for linear modelling.

voom()作用是原始counts转换为logCPM值,将所有计数加0.5,以避免取对数零。然后,将logCPM值矩阵进行标准化。在运行voom()之前,应对counts矩阵进行过滤以除去counts非常低的基因。为此,可以使用edgeR包中的filterByExpr函数。

image.png

因为我已经通过edgeR的TMM标准化,所以效果还行,不需要处理,如果效果不好可能由于数据没有过滤好,如下图:


image.png

对voom图的解释可以参考这里:
https://stats.stackexchange.com/questions/160255/voom-mean-variance-trend-plot-how-to-interpret-the-plot

差异分析:

#不需要voom转化时:
fit <- lmFit(logCPM_counts, design)
fit <- eBayes(fit)
DE_genes <- topTable(fit, coef = 2,p.value = 0.5, lfc = log2(1.5), number = Inf,sort.by="logFC")
#不进行TMM转化,即不运行calcNormFactors(),直接进行voom转化
y = voom(counts, design, plot = T)
fit <- lmFit(y, design)
fit <- eBayes(fit)
DE_genes <- topTable(fit, coef = 2,p.value = 0.05, lfc = log2(1.5), number = Inf,sort.by="logFC")

欢迎关注~


公众号二维码.jpg

参考:
https://www.bioinfo-scrounger.com/archives/115/
https://www.jianshu.com/p/616de0ee881a
https://mp.weixin.qq.com/s?__biz=MzI4NjMxOTA3OA==&mid=2247483987&idx=1&sn=aa2ca81e7fe128edaaedc47479c517c9&chksm=ebdf8adadca803cc31261a1ccabf8a6bdb835ce12b670cc01969fcfde51cfdb991d0619e7695&scene=21#wechat_redirect

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,504评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,434评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,089评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,378评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,472评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,506评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,519评论 3 413
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,292评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,738评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,022评论 2 329
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,194评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,873评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,536评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,162评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,413评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,075评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,080评论 2 352

推荐阅读更多精彩内容