用户数据分析怎么做呢?方法是什么?

用户数据那么多,全都想要怎么办?用户的数据是海量的,全都拿来分析是不切实际的,用户数据分析也不需要这么多的数据,所以需要从数据的不同维度来分类。用户数据分析中需要的数据大致可以分为如下4种:

1、用户基础数据

企业当然想得到超级详细的数据,不过最差的选择也是希望能够得到基础数据,因为一个用户就是销售线索,很可能会成交到订单;

用户的基础数据包括:姓名、电话、邮箱、生日等这些围绕着人这个主要对象的基础属性;

更多的基础数据,要扩展到用户的行为记录,包括内容消耗记录与频次,线下交互活动数据,线上直播参与数据等,这些对于用户分析有很大意义。

基础数据是每一个APP运营都需要清晰了解的数据,比如用户的男女比例、年龄成分、用户活跃情况等。这些数据是运营工作开展的基础,如果你还不了解这些数据,麻烦停下手头的工作,重新做一遍新员工培训吧。

2. 个性化数据

个性化数据则是有针对性的数据,是根据不同的用户场景或者运营需求进行标签化抽取后筛选出来的,拿APP的用户日常活动运营来说:

在前期策划时,用户的群体画像能够引导活动的策划方向,而用户的需求决定了活动的目标;通过了解用户的兴趣,来确定活动的内容及展示方式;通过了解用户行为的一致性,来决定活动推广的时间节点。

在运营中,通过详细的事件统计,自定义埋点,进一步分析用户在活动中的行为,了解整个活动各环节的数据转化情况,再根据数据的反馈进行活动优化以及活动投入的调整。

而在活动结束时,可以通过对用户新增、活跃、留存,甚至卸载情况进行分析,评估整个活动的效果,为下一次活动提供宝贵的数据对比参考。

3、用户企业属性数据

企业属性赋予了人的价值,比如公司,职位,企业邮箱,如果说用户基础数据是必要条件,那么企业数据是数据的价值体现。

4、社交属性数据

包括微信、微博、LinkedIn、脉脉等数据,这部分数据是增值数据,对于用户画像的刻录很有帮助。

在做用户数据分析的时候,用户是量级的,我们不会对一个用户进行深度分析,而是纵向对批量用户进行分析。分析从以下方向进行:

首先,看用户行为激发的数据变化,包含跳出,退出,活跃度,日活,这些数据会对运营有一个监控作用,趋势代表着增长或衰减,异常反应问题。

其次,对用户进行分群,可根据用户属性、触点行为分类、以及利用营销自动化得到的预测性分析结果,进行分群,群发信息,比如:经常购买母婴用品的顾客,需要早教产品的可能性大很多。这些都可以利用用户运营分析得到指导性决策;方舟可以支持用户分群,以及继承多家营销工具,同时可以检测营销反馈效果。

最后,电商类用户运营更要关注用户的购买属性,根据用户购买品分析出用户的年龄、阶层、爱好等,进行精准营销。

因此随着精细化运营变得越来越重要,个性化数据的统计、分析以及应用才是数据运营的核心能力,用户数据分析具体做的好不好将成为运营成功的关键所在。

 

 

 

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,752评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,100评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,244评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,099评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,210评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,307评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,346评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,133评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,546评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,849评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,019评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,702评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,331评论 3 319
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,030评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,260评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,871评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,898评论 2 351

推荐阅读更多精彩内容