数据结构之BloomFilter

Bloom Filter
先看名字Filter,过滤器,说明这个数据结构主要是作为过滤器使用的。它可以判断一个元素是否在一个数据集里,如果它判断为否那么就一定不在,如果判断为是那么就可能存在。

Bloom Filter判断不存在是一定准确的,而判断在就可能不准确。所以它的使用场景是作为一个过滤器,可以把数据过滤为一定不存在的和可能存在的(存在一个错判率f,即有f的概率把不存在的判断为存在的)。

BloomFilter原理

我的理解是相较于hashSet, bloomFilter相当于只做了hash而不去做equals比较(所以判断否是一定准确的因为hash都不相同,判断为是那么还要进一步比较但是bloomFilter不会把原值存下来,所以没办法比较equal那么就存在误判了),一次hash函数的误判率还是比较高的,bloomFilter支持设置K个Hash函数。

下面看一个例子来说明其原理
定义一个n位的数组和k个hash函数(n=8,k=2),两个hash函数分别为K1,K2

image

image

从上图我们就可以看出bloomFilter的特点了

  1. 占用空间小(只要一个位数组记录0和1)
  2. 查找的效率高,时间复杂度位O(k),k为上述说的哈希函数个数.

缺点:

  1. 判断存在不可信(有误判的概率)
  2. 不可删除(因为数组中的每一个1都可能是好几个元素共用的)

公式
参数
m:bit数组长度
n:加入bloomFilter的元素个数
k:hash函数个数
p(fpp):误判率

image

最优k:
    

image

代入最优K后

image

Guava的BloomFilter
create方法

 // 如果只设置n,会默认设置f=0.03
 public static <T> BloomFilter<T> create(Funnel<? super T> funnel, long expectedInsertions) {
    return create(funnel, expectedInsertions, 0.03); // FYI, for 3%, we always get 5 hash functions
  }
  
  public static <T> BloomFilter<T> create(
      Funnel<? super T> funnel, long expectedInsertions, double fpp) {
    return create(funnel, expectedInsertions, fpp, BloomFilterStrategies.MURMUR128_MITZ_64);
  }
  
   @VisibleForTesting
  static <T> BloomFilter<T> create(
      Funnel<? super T> funnel, long expectedInsertions, double fpp, Strategy strategy) {
    ... //some check
    if (expectedInsertions == 0) {
      expectedInsertions = 1;
    }
    // 计算m
    long numBits = optimalNumOfBits(expectedInsertions, fpp);
    // 计算k
    int numHashFunctions = optimalNumOfHashFunctions(expectedInsertions, numBits);
    try {
      return new BloomFilter<T>(new LockFreeBitArray(numBits), numHashFunctions, funnel, strategy);
    } catch (IllegalArgumentException e) {
      throw new IllegalArgumentException("Could not create BloomFilter of " + numBits + " bits", e);
    }
  }

通常我们只需要指定预定放入的元素数量n,和误判率f。 会算出要达到这个误判率需要设置的m和k。

  static long optimalNumOfBits(long n, double p) {
    if (p == 0) {
      p = Double.MIN_VALUE;
    }
    return (long) (-n * Math.log(p) / (Math.log(2) * Math.log(2)));
  }

 static int optimalNumOfHashFunctions(long n, long m) {
    // (m / n) * log(2), but avoid truncation due to division!
    return Math.max(1, (int) Math.round((double) m / n * Math.log(2)));
  }
  

BloomFilter可以节省大量的空间,但会带来一定的误判率,通常用于数据量较大的时候。

写作不易,给个赞支持一下呗!

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,084评论 6 503
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,623评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,450评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,322评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,370评论 6 390
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,274评论 1 300
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,126评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,980评论 0 275
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,414评论 1 313
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,599评论 3 334
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,773评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,470评论 5 344
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,080评论 3 327
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,713评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,852评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,865评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,689评论 2 354