TCP简述

前言

  • 首先,我们需要知道,我们程序的数据首先会打到TCP的Segment中,然后TCP的Segment会打到IP的Packet中,然后再打到以太网Ethernet的Frame中,传到对端后,各个层解析自己的协议,然后把数据交给更高层的协议处理。
  • 网络上的传输是没有连接的,包括TCP也是一样的。而TCP所谓的“连接”,其实只不过是在通讯的双方维护一个“连接状态”,让它看上去好像有连接一样。所以,TCP的状态变换是非常重要的。

TCP的特性

  • TCP提供一种面向连接的、可靠的字节流服务
  • 在一个TCP连接中,仅有两方进行彼此通信。广播和多播不能用于TCP
  • TCP使用校验和,确认和重传机制来保证可靠传输
  • TCP使用累积确认
  • TCP使用滑动窗口机制来实现流量控制,通过动态改变窗口的大小进行拥塞控制

TCP头格式

Paste_Image.png
  • TCP的包是没有IP地址的,那是IP层上的事。但是有源端口和目标端口。
  • 一个TCP连接需要四个元组来表示是同一个连接(src_ip, src_port, dst_ip, dst_port)准确说是五元组,还有一个是协议。但因为这里只是说TCP协议,所以,这里我只说四元组。
  • 注意上图中的四个非常重要的东西:
  • Sequence Number是包的序号,用来解决网络包乱序(reordering)问题。
  • Acknowledgement Number就是ACK——用于确认收到,用来解决不丢包的问题。
  • Window又叫Advertised-Window,也就是著名的滑动窗口(Sliding Window),用于解决流控的。
  • TCP Flag ,也就是包的类型,主要是用于操控TCP的状态机的。

TCP状态机

Paste_Image.png

Paste_Image.png

很多人会问,为什么建链接要3次握手,断链接需要4次挥手?

  • 对于建链接的3次握手,主要是要初始化Sequence Number 的初始值。通信的双方要互相通知对方自己的初始化的Sequence Number(缩写为ISN:Inital Sequence Number)——所以叫SYN,全称Synchronize Sequence Numbers。也就上图中的 x 和 y。这个号要作为以后的数据通信的序号,以保证应用层接收到的数据不会因为网络上的传输的问题而乱序(TCP会用这个序号来拼接数据)。
  • 对于4次挥手,其实你仔细看是2次,因为TCP是全双工的,所以,发送方和接收方都需要Fin和Ack。只不过,有一方是被动的,所以看上去就成了所谓的4次挥手。如果两边同时断连接,那就会就进入到CLOSING状态,然后到达TIME_WAIT状态。下图是双方同时断连接的示意图(你同样可以对照着TCP状态机看):


    Paste_Image.png

三次握手与四次挥手###

  • 所谓三次握手(Three-way Handshake),是指建立一个 TCP 连接时,需要客户端和服务器总共发送3个包。
    三次握手的目的是连接服务器指定端口,建立 TCP 连接,并同步连接双方的序列号和确认号,交换 TCP 窗口大小信息。在 socket 编程中,客户端执行 connect() 时。将触发三次握手。
  • 第一次握手(SYN=1, seq=x):

客户端发送一个 TCP 的 SYN 标志位置1的包,指明客户端打算连接的服务器的端口,以及初始序号 X,保存在包头的序列号(Sequence Number)字段里。

发送完毕后,客户端进入 SYN_SEND 状态。

  • 第二次握手(SYN=1, ACK=1, seq=y, ACKnum=x+1):

服务器发回确认包(ACK)应答。即 SYN 标志位和 ACK 标志位均为1。服务器端选择自己 ISN 序列号,放到 Seq 域里,同时将确认序号(Acknowledgement Number)设置为客户的 ISN 加1,即X+1。
发送完毕后,服务器端进入 SYN_RCVD 状态。

  • 第三次握手(ACK=1,ACKnum=y+1)

客户端再次发送确认包(ACK),SYN 标志位为0,ACK 标志位为1,并且把服务器发来 ACK 的序号字段+1,放在确定字段中发送给对方,并且在数据段放写ISN的+1

发送完毕后,客户端进入 ESTABLISHED 状态,当服务器端接收到这个包时,也进入 ESTABLISHED 状态,TCP 握手结束。

三次握手的过程的示意图如下:

Paste_Image.png
  • TCP的连接的拆除需要发送四个包,因此称为四次挥手(Four-way handshake),也叫做改进的三次握手。客户端或服务器均可主动发起挥手动作,在 socket 编程中,任何一方执行 close() 操作即可产生挥手操作。
  • 第一次挥手(FIN=1,seq=x)
    假设客户端想要关闭连接,客户端发送一个 FIN 标志位置为1的包,表示自己已经没有数据可以发送了,但是仍然可以接受数据。
    发送完毕后,客户端进入 FIN_WAIT_1 状态。
  • 第二次挥手(ACK=1,ACKnum=x+1)
    服务器端确认客户端的 FIN 包,发送一个确认包,表明自己接受到了客户端关闭连接的请求,但还没有准备好关闭连接。
    发送完毕后,服务器端进入 CLOSE_WAIT 状态,客户端接收到这个确认包之后,进入 FIN_WAIT_2 状态,等待服务器端关闭连接。
  • 第三次挥手(FIN=1,seq=y)
    服务器端准备好关闭连接时,向客户端发送结束连接请求,FIN 置为1。
    发送完毕后,服务器端进入 LAST_ACK 状态,等待来自客户端的最后一个ACK。
  • 第四次挥手(ACK=1,ACKnum=y+1)
    客户端接收到来自服务器端的关闭请求,发送一个确认包,并进入 TIME_WAIT状态,等待可能出现的要求重传的 ACK 包。
    .
    服务器端接收到这个确认包之后,关闭连接,进入 CLOSED 状态。
    .
    客户端等待了某个固定时间(两个最大段生命周期,2MSL,2 Maximum Segment Lifetime)之后,没有收到服务器端的 ACK ,认为服务器端已经正常关闭连接,于是自己也关闭连接,进入 CLOSED 状态。

四次挥手的示意图如下:

Paste_Image.png

SYN攻击

  • 什么是 SYN 攻击(SYN Flood)?
    在三次握手过程中,服务器发送 SYN-ACK 之后,收到客户端的 ACK 之前的 TCP 连接称为半连接(half-open connect)。此时服务器处于 SYN_RCVD 状态。当收到 ACK 后,服务器才能转入 ESTABLISHED 状态.
    .
    SYN 攻击指的是,攻击客户端在短时间内伪造大量不存在的IP地址,向服务器不断地发送SYN包,服务器回复确认包,并等待客户的确认。由于源地址是不存在的,服务器需要不断的重发直至超时,这些伪造的SYN包将长时间占用未连接队列,正常的SYN请求被丢弃,导致目标系统运行缓慢,严重者会引起网络堵塞甚至系统瘫痪。
    SYN 攻击是一种典型的 DoS/DDoS 攻击。
  • 如何检测 SYN 攻击?
    检测 SYN 攻击非常的方便,当你在服务器上看到大量的半连接状态时,特别是源IP地址是随机的,基本上可以断定这是一次SYN攻击。在 Linux/Unix 上可以使用系统自带的 netstats 命令来检测 SYN 攻击。

  • 如何防御 SYN 攻击?
    SYN攻击不能完全被阻止,除非将TCP协议重新设计。我们所做的是尽可能的减轻SYN攻击的危害,常见的防御 SYN 攻击的方法有如下几种:

  • 缩短超时(SYN Timeout)时间

  • 增加最大半连接数

  • 过滤网关防护

  • SYN cookies技术

第一步:
客户端TCP向服务端TCP发送一个特殊的TCP报文段,不包含应用层数据,但在报文段首部的SYN标志位被设为1,表示建立连接的报文段,因此被称为SYN报文段。另外,客户端会选择一个初始序号client_isn,记录在此报文段的序列号seq中。该报文段会封装在一个IP数据报中被发送到服务器端。这个报文段表达的就是希望建立的信息。
第二步:
一旦包含SYN报文段的IP数据报到达服务器主机,服务器从IP数据报中提取出TCP SYN报文段,为该TCP连接分配需要的缓存和变量,并向客户端发送表示允许连接的报文段。这个允许连接的报文段也不包含任何应用层数据,但包含三个重要的信息:首先,SYN被置为1,其次,该报文段的确认号ack被置为client_isn+1,表示下一个希望接受的序列号为client_isn+1,最后,服务器选择自己的初始序号server_isn,记录在序列号seq中。这个报文表达的就是允许建立该连接,我自己的初始序号是server_isn。有时也被成为SYNACK报文段。
第三步:
在收到SYNACK报文段之后,客户端也要给该连接分配缓存和变量,客户端向服务器再发送一个报文段,对允许连接的报文段进行了确认,其ack被置为server_isn+1,表示下一个希望从服务器获得的报文段的序列号为此。并且由于连接已经建立了,SYN标志位被置为0,并且已经可以携带被传送到服务器的应用层数据。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,542评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,596评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,021评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,682评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,792评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,985评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,107评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,845评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,299评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,612评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,747评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,441评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,072评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,828评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,069评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,545评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,658评论 2 350

推荐阅读更多精彩内容

  • 1、TCP状态linux查看tcp的状态命令:1)、netstat -nat 查看TCP各个状态的数量2)、lso...
    北辰青阅读 9,414评论 0 11
  • 个人认为,Goodboy1881先生的TCP /IP 协议详解学习博客系列博客是一部非常精彩的学习笔记,这虽然只是...
    贰零壹柒_fc10阅读 5,051评论 0 8
  • 1.这篇文章不是本人原创的,只是个人为了对这部分知识做一个整理和系统的输出而编辑成的,在此郑重地向本文所引用文章的...
    SOMCENT阅读 13,053评论 6 174
  • 18.1 引言 TCP是一个面向连接的协议。无论哪一方向另一方发送数据之前,都必须先在双方之间建立一条连接。本章将...
    张芳涛阅读 3,351评论 0 13
  • 传输层-TCP, TCP头部结构 ,TCP序列号和确认号详解 TCP主要解决下面的三个问题 1.数据的可靠传输...
    抓兔子的猫阅读 4,512评论 1 46