1 什么是A/B测试?
A/B测试是一种流行的网页优化方法,可以用于增加转化率注册率等网页指标。简单来说,就是为同一个目标制定两个方案(比如两个页面),将产品的用户流量分割成 A/B 两组,一组试验组,一组对照组,两组用户特点类似,并且同时运行。试验运行一段时间后分别统计两组用户的表现,再将数据结果进行对比,就可以科学的帮助决策。比如在这个例子里,50%用户看到 A 版本页面,50%用户看到 B 版本页面,结果 A 版本用户转化率 23%,高于 B 版本的 11%,在试验流量足够大的情况下,我们就可以判定 A 版本胜出,然后将 A 版本页面推送给所有的用户。
AB测试本质上是个分离式组间实验,以前进行AB测试的技术成本和资源成本相对较高,但现在一系列专业的可视化实验工具的出现,AB测试已越来越成为网站优化常用的方法。
A/B测试其实是一种“先验”的实验体系,属于预测型结论,与“后验”的归纳性结论差别巨大。A/B测试的目的在于通过科学的实验设计、采样样本代表性、流量分割与小流量测试等方式来获得具有代表性的实验结论,并确信该结论在推广到全部流量可信。
拓展阅读:http://m.sanwen8.cn/p/15dSHwx.html