【转载】对ResNet的理解

ResNet要解决的问题

深度学习网络的深度对最后的分类和识别的效果有着很大的影响,所以正常想法就是能把网络设计的越深越好,但是事实上却不是这样,常规的网络的堆叠(plain network)在网络很深的时候,效果却越来越差了。

这里其中的原因之一即是网络越深,梯度消失的现象就越来越明显,网络的训练效果也不会很好。

但是现在浅层的网络(shallower network)又无法明显提升网络的识别效果了,所以现在要解决的问题就是怎样在加深网络的情况下又解决梯度消失的问题。

ResNet的解决方案

ResNet引入了残差网络结构(residual network),通过残差网络,可以把网络层弄的很深,据说现在达到了1000多层,最终的网络分类的效果也是非常好,残差网络的基本结构如下图所示

通过在输出和输入之间引入一个shortcut connection,而不是简单的堆叠网络,这样可以解决网络由于很深出现梯度消失的问题,从而可可以把网络做的很深,ResNet其中一个网络结构如下图所示

之前一直在探究残差网络提出的由来,作者是基于先前的什么知识才提出残差网络的,咋一看感觉残差网络提出的很精巧,其实就是很精巧,但是现在感觉非要从残差的角度进行解读感觉不太好理解,真正起作用的应该就是shortcut连接了,这才是网络的关键之处。

对ResNet的解读

基本的残差网络其实可以从另一个角度来理解,这是从另一篇论文里看到的,如下图所示:

残差网络单元其中可以分解成右图的形式,从图中可以看出,残差网络其实是由多种路径组合的一个网络,直白了说,残差网络其实是很多并行子网络的组合,整个残差网络其实相当于一个多人投票系统(Ensembling)。下面来说明为什么可以这样理解

删除网络的一部分

如果把残差网络理解成一个Ensambling系统,那么网络的一部分就相当于少一些投票的人,如果只是删除一个基本的残差单元,对最后的分类结果应该影响很小;而最后的分类错误率应该适合删除的残差单元的个数成正比的,论文里的结论也印证了这个猜测。

下图是比较VGG和ResNet分别删除一层网络的分类错误率变化

下图是ResNet分类错误率和删除的基本残差网络单元个数的关系

ResNet的真面目

ResNet的确可以做到很深,但是从上面的介绍可以看出,网络很深的路径其实很少,大部分的网络路径其实都集中在中间的路径长度上,如下图所示:

从这可以看出其实ResNet是由大多数中度网络和一小部分浅度网络和深度网络组成的,说明虽然表面上ResNet网络很深,但是其实起实际作用的网络层数并没有很深,我们能来进一步阐述这个问题,我们知道网络越深,梯度就越小,如下图所示

而通过各个路径长度上包含的网络数乘以每个路径的梯度值,我们可以得到ResNet真正起作用的网络是什么样的,如下图所示

我们可以看出大多数的梯度其实都集中在中间的路径上,论文里称为effective path。

从这可以看出其实ResNet只是表面上看起来很深,事实上网络却很浅。


原文链接:

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,142评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,298评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,068评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,081评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,099评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,071评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,990评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,832评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,274评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,488评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,649评论 1 347
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,378评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,979评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,625评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,796评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,643评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,545评论 2 352

推荐阅读更多精彩内容