数据库范式

第一范式

特点:符合1NF的关系中的每个属性都不可再分


image.png
存在问题:

数据冗余过大
插入异常
删除异常
修改异常


image.png

1.每一名学生的学号、姓名、系名、系主任这些数据重复多次。每个系与对应的系主任的数据也重复多次——数据冗余过大

  1. 假如学校新建了一个系,但是暂时还没有招收任何学生(比如3月份就新建了,但要等到8月份才招生),那么是无法将系名与系主任的数据单独地添加到数据表中去的 (注1)——插入异常
    注1:根据三种关系完整性约束中实体完整性的要求,关系中的码(注2)所包含的任意一个属性都不能为空,所有属性的组合也不能重复。为了满足此要求,图中的表,只能将学号与课名的组合作为码,否则就无法唯一地区分每一条记录。
    注2:码:关系中的某个属性或者某几个属性的组合,用于区分每个元组(可以把“元组”理解为一张表中的每条记录,也就是每一行)。
    3.假如将某个系中所有学生相关的记录都删除,那么所有系与系主任的数据也就随之消失了(一个系所有学生都没有了,并不表示这个系就没有了)。——删除异常
    4.假如李小明转系到法律系,那么为了保证数据库中数据的一致性,需要修改三条记录中系与系主任的数据。——修改异常。
第二范式
image.png
2NF在1NF的基础上,消除了非主属性对于码的部分函数依赖。

函数依赖:我们可以这么理解(但并不是特别严格的定义):若在一张表中,在属性(或属性组)X的值确定的情况下,必定能确定属性Y的值,那么就可以说Y函数依赖于X,写作 X → Y。也就是说,在数据表中,不存在任意两条记录,它们在X属性(或属性组)上的值相同,而在Y属性上的值不同。这也就是“函数依赖”名字的由来,类似于函数关系 y = f(x),在x的值确定的情况下,y的值一定是确定的。
完全函数依赖:在一张表中,若 X → Y,且对于 X 的任何一个真子集(假如属性组 X 包含超过一个属性的话),X ' → Y 不成立,那么我们称 Y 对于 X 完全函数依赖,记作 X F→ Y。

image.png
image.png

例子:学生基本信息表R(学号,班级,姓名)假设不同的班级学号有相同的,班级内学号不能相同,在R关系中,(学号,班级)->(姓名),但是(学号)->(姓名)不成立,(班级)->(姓名)不成立,所以姓名完全函数依赖与(学号,班级);

部分函数依赖:假如 Y 函数依赖于 X,但同时 Y 并不完全函数依赖于 X,那么我们就称 Y 部分函数依赖于 X,记作 X P→ Y

image.png
image.png

例子:学生基本信息表R中(学号,身份证号,姓名)当然学号属性取值是唯一的,在R关系中,(学号,身份证号)->(姓名),(学号)->(姓名),(身份证号)->(姓名);所以姓名部分函数依赖与(学号,身份证号);

传递函数依赖:假如 Z 函数依赖于 Y,且 Y 函数依赖于 X 那么我们就称 Z 传递函数依赖于 X ,记作 X T→ Z

image.png

设 K 为某表中的一个属性或属性组,若除 K 之外的所有属性都完全函数依赖于 K(这个“完全”不要漏了),那么我们称 K 为候选码,简称为码。在实际中我们通常可以理解为:假如当 K 确定的情况下,该表除 K 之外的所有属性的值也就随之确定,那么 K 就是码。一张表中可以有超过一个码。(实际应用中为了方便,通常选择其中的一个码作为主码

image.png

学号和课名就是码

非主属性

包含在任何一个码中的属性成为主属性。那么除去主属性之外的属性都是非主属性

第三范式

定义:
第三范式是在第二范式的基础上定义的,
消除了非主属性对于码的传递函数依赖
商品名称|价格|商品名称|重量|有效期|分类|分类描述
------------|------|------------|------|---------|------|------------
可乐|3.00| | 250ml|2014.6|酒水饮料|碳酸饮料
苹果|8.00| |500g| | 生鲜食品|水果

存在以下转递函数依赖关系:

(商品名称)->(分类)->(分类描述)
也就是说存在非关键字段“分类描述”
对关键字段“商品名称”的传递函数依赖

存在的问题:

(分类,分类描述)对于每一个商品都会进行记录,所以存在着数据冗余。同时也还存在数据的插入。更新及删除异常


image.png
BCNF范式
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,723评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,003评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,512评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,825评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,874评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,841评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,812评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,582评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,033评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,309评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,450评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,158评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,789评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,409评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,609评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,440评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,357评论 2 352