Elasticsearch(五):聚合分析

es 中的聚合分析主要分为:

  • metric:指标分析类型,如最值、平均值等等。
  • bucket:分桶类型,类似 group by
  • pipeline:管道分析,基于上一级聚合分析结果进行再分析。

metric

min / max / sum / avg

min / max / sum / avg 分别用于统计最小值、最大值、求和、平均值:

GET /test/_search
{
  "size": 0,
  "aggs": {
    "min_age": {
      "min": {
        "field": "age"
      }
    },
    "max_age": {
      "max": {
        "field": "age"
      }
    },
    "sum_age": {
      "sum": {
        "field": "age"
      }
    },
    "avg_age": {
      "avg": {
        "field": "age"
      }
    }
  }
}

cardinality

cardinality 用于获取字段不同数值的个数,即 distinct count

GET /test/_search
{
  "size": 0,
  "aggs": {
    "cardinality_age": {
      "cardinality": {
        "field": "age"
      }
    }
  }
}

stats

stats 用于统计一系列指标,包括 min / max / sum / avg / count

GET /test/_search
{
  "size": 0,
  "aggs": {
    "stats_age": {
      "stats": {
        "field": "age"
      }
    }
  }
}

extended_stats

extended_stats 相对于 stats 提供更多指标,如方差、标准差等:

GET /test/_search
{
  "size": 0,
  "aggs": {
    "stats_age": {
      "extended_stats": {
        "field": "age"
      }
    }
  }
}

percentiles

percentiles 用于百分位统计,默认统计 1,5,25,50,75,95,99 分位点,通过 percents 参数可以指定要计算的分位点:

GET /test/_search
{
  "size": 0,
  "aggs": {
    "percentiles_age": {
      "percentiles": {
        "field": "age",
        "percents": [
          50,
          75,
          95,
          99
        ]
      }
    }
  }
}

percentile_ranks

percentile_ranks 用于获取指定数值对应的分位点,通过 values 参数指定:

GET /test/_search
{
  "size": 0,
  "aggs": {
    "percentiles_ranks_age": {
      "percentile_ranks": {
        "field": "age",
        "values": [
          19
        ]
      }
    }
  }
}

bucket

term

term 指按词分桶,结果中的 buckets 会给出统计出的不同词及对应的文档个数。

GET /test/_search
{
  "size": 0, 
  "aggs": {
    "job": {
      "terms": {
        "field": "job.keyword",
        "size": 10
      }
    }
  }
}

// ...
  "aggregations" : {
    "job" : {
      "doc_count_error_upper_bound" : 0,
      "sum_other_doc_count" : 0,
      "buckets" : [
        {
          "key" : "c++",
          "doc_count" : 2
        },
        {
          "key" : "Java junior engineer",
          "doc_count" : 1
        },
        {
          "key" : "c",
          "doc_count" : 1
        },
        {
          "key" : "js",
          "doc_count" : 1
        }
      ]
    }
  }
// ..

通过使用 top_hits 能够额外获取每个桶中对应的文档内容,支持排序:

GET /test/_search
{
  "size": 0,
  "aggs": {
    "job": {
      "terms": {
        "field": "job.keyword",
        "size": 10
      },
      "aggs": {
        "top": {
          "top_hits": {
            "size": 10,
            "sort": [
              "birth"
            ]
          }
        }
      }
    }
  }
}

range

range 指定数值范围来设定分桶规则,支持使用 key 参数指定聚合结果名称:

GET /test/_search
{
  "size": 0,
  "aggs": {
    "age_range": {
      "range": {
        "field": "age",
        "ranges": [
          {
            "key": "lt 20",
            "to": 20
          },
          {
            "from": 20,
            "to": 30
          },
          {
            "key": "gt 30",
            "from": 30
          }
        ]
      }
    }
  }
}

range 同样支持日期类的范围统计,通过 format 参数指定返回的日期格式:

GET /test/_search
{
  "size": 0,
  "aggs": {
    "birth_range": {
      "range": {
        "field": "birth",
        "format": "yyyy",
        "ranges": [
          {
            "to": 1990
          },
          {
            "from": 1990,
            "to": 2000
          },
          {
            "from": 2000
          }
        ]
      }
    }
  }
}

historgram

historgram 用以指定间隔分隔数据,interval 参数指定间隔大小,extended_bounds 参数指定间隔分隔的范围:

GET /test/_search
{
  "size": 0,
  "aggs": {
    "age_histogram": {
      "histogram": {
        "field": "age",
        "interval": 5,
        "extended_bounds": {
          "min": 0,
          "max": 100
        }
      }
    }
  }
}

date_histogram

date_histogram 是针对日期间隔的统计:

GET /test/_search
{
  "size": 0,
  "aggs": {
    "birth_date_histogram": {
      "date_histogram": {
        "field": "birth",
        "calendar_interval": "year",
        "format": "yyyy"
      }
    }
  }
}

pipeline

pipeline 针对聚合统计结果进行再分析,通过 buckets_path 参数指定需要再分析的指标:

GET /test/_search
{
  "size": 0,
  "aggs": {
    "job": {
      "terms": {
        "field": "job.keyword",
        "size": 10
      },
      "aggs": {
        "avg_age": {
          "avg": {
            "field": "age"
          }
        }
      }
    },
    "max_avg_age_by_job": {
      "max_bucket": {
        "buckets_path": "job>avg_age"
      }
    }
  }
}

作用范围

聚合分析默认作用范围是 query 查询语句的结果集,es 提供一系列方式改变聚合分析的作用范围。

为某个聚合分析设定过滤条件

先使用 filter 指定当前聚合分析的过滤条件,在子查询中输入真正的聚合语句:

GET /test/_search
{
  "size": 0,
  "aggs": {
    "age_over20_job": {
      "filter": {
        "range": {
          "age": {
            "gte": 20
          }
        }
      },
      "aggs": {
        "job": {
          "terms": {
            "field": "job.keyword",
            "size": 10
          }
        }
      }
    }
  }
}

聚合分析后过滤

如果需要在聚合分析出全部结果后控制返回的文档结果,可以使用 post_filter 来做过滤。

GET /test/_search
{
  "size": 10,
  "aggs": {
    "job": {
      "terms": {
        "field": "job.keyword",
        "size": 10
      }
    }
  },
  "post_filter": {
    "match": {
      "age": "18"
    }
  }
}

忽略 query

如果需要忽略 query 对聚合分析的影响,通过 global 参数指定无视 query 过滤条件,基于全部文档进行分析,并在子查询中输入真正的聚合语句。

GET /test/_search
{
  "query": {
    "match": {
      "job.keyword": "js"
    }
  }, 
  "size": 10,
  "aggs": {
    "all": {
      "global": {},
      "aggs": {
        "job": {
          "terms": {
            "field": "job.keyword",
            "size": 10
          }
        }
      }
    }
  }
}

排序

聚合分析中的排序默认是按各统计结果的数量倒序排序的,同时可以指定子查询结果作为排序依据:

GET /test/_search
{
  "size": 0,
  "aggs": {
    "job": {
      "terms": {
        "field": "job.keyword",
        "size": 10,
        "order": {
          "avg_age": "asc"
        }
      },
      "aggs": {
        "avg_age": {
          "avg": {
            "field": "age"
          }
        }
      }
    }
  }
}

聚合精准度问题

对于 terms 类型的聚合,每个分片会按数量倒序排序后返回前 size 个结果,在整合时可能会导致不准确。聚合分析结果有两个指标说明潜在的遗漏问题:

  • doc_count_error_upper_bound:各分片被遗漏的 term 的最大值的总和。
  • sum_other_doc_count:各分片返回的未被最终结果使用的其它聚合统计总数。

shard_size

shard_size 参数用于指定分片实际返回的统计指标数量,默认为 size * 1.5 + 10。通过调整 shard_size 可以尽量减小聚合统计的误差。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,039评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,223评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,916评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,009评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,030评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,011评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,934评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,754评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,202评论 1 309
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,433评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,590评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,321评论 5 342
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,917评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,568评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,738评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,583评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,482评论 2 352

推荐阅读更多精彩内容