【机器学习与R语言】8- 神经网络

1.理解神经网络

1)基本概念

  • 人工神经网络(ANN):对一组输入信号和一组输出信号之间的关系进行建模,模型来源于人类大脑对来自感觉输入刺激反应的理解。使用人工神经元或节点的网络来学习。
  • 图灵测试:如果一个人不能把机器行为和一种生物行为区分开来,那么将该机器划分为智能类。
  • ANN应用方法:分类/数值预测/无监督模式识别
  • ANN应用场景:输入和输出好理解,但其过程很复杂(即黑箱方法)
生物神经元示意图

人工神经元模型,x输入信号,y输出信号,w加权,f为激活函数(求和)

n个输入神经元:


image.png

2)激活函数

  • 单位跳跃激活函数:输入信号总和大于0,神经元才击破阈值
单位跳跃激活函数示意图
  • S形激活函数(最常用的激活函数):输出信号不是二元的,而是0-1之间的某个值(可微的,因此可对整个输入范围求导)
S形激活函数示意图
  • 其他激活函数:差异就在于输出信号的范围不同,一般是(0-1),(-1,1),(-∞,+∞)中的一种。
image.png

对于很多激活函数,影响输出信号的输入值范围是相对较窄的,比如上面S形激活函数影响输出信号(0,1)的输入信号范围(-5,5),存在输入信号压缩(也称为压缩函数),所以神经网络输入一般要做标准化,使特征值落在0附近的小范围内,这样模型训练也更快些。

3)网络拓扑

神经网络的学习能力来自它的拓扑结构:相互连接的神经元模式和结构。关键特征:

  • 层的数目
单层网络示意图

多层网络示意图
多个隐藏层又称为深度学习
  • 信息传播方向
    前馈网络:输入信号从上至下节点传送,直至输出层。应用广泛。
    反馈网络(递归网络):允许信号使用循环在两个方向上传播。更贴近生物神经网络工作原理,使复杂模式被学习。停留在理论层面。
    多层前馈网络(多层感知器,MLP):人工神经网络拓扑结构的事实标准。
递归网络示意图
  • 每一层内的节点数
    输入节点的个数由输入数据特征的数量预先确定,输出节点的个数由需要进行建模的结果或结果中分类水平数预先确定。隐藏节点的个数留给使用者在训练模型之前确定(无可信规则)。
    较多数量的神经元训练更严格的模型,但易过拟合,且训练慢。最好是基于验证数据集,使用较少的节点产生适用的性能。

4)训练算法

通过调整连接权重训练神经网络模型的计算量非常大,因此一种后向传播误差的训练策略被发现。

目前,后向传播算法的多层前馈网络在数据挖掘领域很常见:

后向传播算法特点

该算法通过两个过程的多次循环进行迭代。
两个过程:

  • 前向阶段:输入层到输出层,沿途应用每个神经元的权重和激活函数,一旦到最后一层就产生一个输出信号。
  • 后向阶段:前向阶段产生的输出信号与训练集中的真是目标值比较,两者的误差向后传播来修正神经元之间的连接权重,并减少将来的误差。

梯度下降法:利用每个神经元的激活函数的导数来确定每个输入权重方向上的梯度(因此一个可微的激活函数很重要,梯度因为权重的改变表明误差的急剧变化,后向传播算法通过学习率的量来改变权重来使得误差最大化减少)。

2.神经网络应用示例

使用人工神经网络对混凝土的强度进行建模

1)收集数据

包含1030个混凝土案例,8个描述混合物成分的特征(与抗压强度相关)。
数据下载:

链接: https://pan.baidu.com/s/1Js-Asm479XYBjuCEXVF7Ng 提取码: 45fv

2)探索和准备数据

输入数据的标准化。注意如果数据服从一个钟形曲线(如正态分布),使用base::scale()函数才是有意义的。如果是均匀分布或严重非正态,则标准化到0-1水平会更合适。

## Example: Modeling the Strength of Concrete  ----

## Step 2: Exploring and preparing the data ----
# read in data and examine structure
concrete <- read.csv("concrete.csv")
str(concrete)

# custom normalization function
normalize <- function(x) { 
  return((x - min(x)) / (max(x) - min(x)))
}

# apply normalization to entire data frame
concrete_norm <- as.data.frame(lapply(concrete, normalize))

# confirm that the range is now between zero and one
summary(concrete_norm$strength)

# compared to the original minimum and maximum
summary(concrete$strength)

# create training and test data
concrete_train <- concrete_norm[1:773, ] #75%
concrete_test <- concrete_norm[774:1030, ] #25%

训练模型前应用于数据的任何变换,之后需要应用反变换,以便将数据转换回原始的测量单位。

3)训练数据

可做神经网络的R包:neuralnet,nnet,RSNNS等。这里使用neuralnet包的同名函数来做,hidden参数即隐藏层默认为1。

## Step 3: Training a model on the data ----
# train the neuralnet model
library(neuralnet)

# simple ANN with only a single hidden neuron
set.seed(12345) # to guarantee repeatable results
concrete_model <- neuralnet(formula = strength ~ cement + slag +
                              ash + water + superplastic + 
                              coarseagg + fineagg + age,
                              data = concrete_train)

# visualize the network topology
plot(concrete_model)

训练模型的网络拓扑结构可视化:

Error是误差平方和SSE,Step是训练步数

4)评估模型

评估模型是compute函数(而非predict),评估中包含网络中每一层的神经元和预测值这2个结果。
因为是数值预测而不是分类问题,所以不能用混淆矩阵来评估,可以用预测的强度和真实值的相关性来评估。

## Step 4: Evaluating model performance ----
# obtain model results
model_results <- compute(concrete_model, concrete_test[1:8])
# obtain predicted strength values
predicted_strength <- model_results$net.result
# examine the correlation between predicted and actual values
cor(predicted_strength, concrete_test$strength)
预测值与真实值相关性

5)提高性能

考虑使用更复杂拓扑结构的网络学习,将隐藏节点个数增加到5来提高性能。

## Step 5: Improving model performance ----
# a more complex neural network topology with 5 hidden neurons
set.seed(12345) # to guarantee repeatable results
concrete_model2 <- neuralnet(strength ~ cement + slag +
                               ash + water + superplastic + 
                               coarseagg + fineagg + age,
                               data = concrete_train, hidden = 5)

# plot the network
plot(concrete_model2)

# evaluate the results as we did before
model_results2 <- compute(concrete_model2, concrete_test[1:8])
predicted_strength2 <- model_results2$net.result
cor(predicted_strength2, concrete_test$strength)
Error减小,步数增加(耗时)

预测值和真实值相关性增加
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,470评论 6 501
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,393评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,577评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,176评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,189评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,155评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,041评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,903评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,319评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,539评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,703评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,417评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,013评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,664评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,818评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,711评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,601评论 2 353