搭建仿真研究的第一步是定义要应用于流程的干扰顺序。如下所示,此干扰将通过Inlet Flow rate(进料流量速率) DV注入:
| 步骤| 部分 | 变量| 属性 | 新值| 旧值| 持续时间(dT)|
| ------------- |:-------------:| -----:|
| 20| DV | DV_1| Ramp| 5.0 | 0| 0|
| 40 | DV | DV_1 | Ramp| 10.0 | 5.0| 0|
| 60 | DV| DV_1| Ramp| 15.0 | 10.0| 0|
| 80 | DV| DV_1| Ramp| 0| 15.0| 0|
| 100| DV| DV_1| Ramp| -5.0 | 0| 50|
| 250| DV| DV_1| Ramp| 5.0 | -5.0| 100|
接下来,我们希望通过运用流程的干扰次序运行仿真为这一流程控制器建立基本的行为。在这种基本情景下所有的MVs都可用于控制(远程),所有的CVs都有相同的优先级(Priority=1)。下图显示了基线仿真的结果。
CVs的初始值都为50。在第5步时控制器状态由Standby(挂起)切换到Control(控制)。这一控制状态的改变使得SMOCPro操作MVs,从而将CVs移到各自的设定值: CV1(红色)移至60,CV2(绿色)保持在50,CV3移至40。
现在让我们来分析当我们把各个操作变量(MVs)脱开SMOCPro(通过将相应的MV控制状态设置为“Local”)时将会发生什么。接下来的实验中,在第5步时所研究的MV将从控制问题移出,在第400步MV将移回控制问题中。为了说明当斜坡CV相互矛盾时正确指定CV优先次序的重要性,我们为每个实验考虑两种不同的设置。在每个仿真图中,左边部分将显示所有的CVs具有相同优先级(在本例中所有CV的Priority =1)时的情况,而图的右侧将显示交错CV优先级的运行结果(CV1,CV2,CV3的Priority分别为1,2,3)。
思考当MV_1是“Local”的情况。当控制器切换到“Control”模式时, MVs将尝试动作以达到控制目标。然而,能控制CV_1的唯一一个MV是脱开控制的MV_1。下图显示了仿真结果。图中左右两边都表明SMOCPro不能控制CV_1到它的设定值。左侧是所有的CVs都具有相同优先级的情况,然而,SMOCPro识别出了可以修改CV_1的唯一手段于控制中是不可用的,因此将CV_1从控制问题中移除。如图所示,CV_1的可达到目标是一条长锁红线,且保持放松。如图右侧所示,当CV的优先级不同时其行为是完全相同的。在这种情况下其是不相关的,因为唯一能够调节CV_1的MV_1是不可用的。
原文:
The first step in building the simulation study is to define the disturbance sequence to be applied to the process. This disturbance will be injected via the Inlet Flow rate DV as follows:
|Step |Section |Variable| Attribute |New Value| Old Value| Duration(dT)|
| ------------- |:-------------:| -----:|
|20 |DV| DV_1 |Ramp |5.0 |0| 0|
|40 |DV| DV_1| Ramp |10.0| 5.0| 0|
|60| DV| DV_1| Ramp |15.0| 10.0| 0|
|80| DV| DV_1| Ramp| 0| 15.0| 0|
|100 |DV| DV_1| Ramp| -5.0 |0 |50|
|250 |DV |DV_1| Ramp| 5.0| -5.0 |100|
Next, we wish to establish the baseline behavior for this process with our controller by running a simulation applying the disturbance sequence to the process. In this baseline scenario all the MVs are available for control (on remote) and all the CVs are at the same priority (Priority=1). The figure below shows the results of the baseline simulation.
The CVs initially start at the same value of 50. The controller status is switched from Standby to Control at step 5. This change in control status results in SMOCPro manipulating the MVs to move the CVs to their respective setpoints: CV1 (red) moves up to 60, CV2 (green) stays at 50 and CV3 moves down to 40.
Now let us analyze what happens when we take each of the manipulated variables (MVs) out of SMOCPro by setting the corresponding MV Control Status to “Local.” For the next experiments, the MV under consideration is removed from the control problem at step 5 and at step 400 the MV is brought back into the control problem. To illustrate the importance of correctly specifying the CV priorities for competing ramps we consider two different setups for each experiment. Each simulation plot will show the case of having all CVs at the same priority (in this case Priority =1 for all CVs) on the left side and the right side of the figure will show the results of having staggered CV priorities, Priority = 1,2,3 for CV1, CV2 and CV3, respectively.
Consider the case when MV_1 is on “Local.” When the controller is turned to “Control” the MVs move to try to achieve the control objectives. However, the only MV that can control CV_1 is MV_1 which has been taken out of the control problem. The figure below shows the simulation results. Both sides of the figure show that SMOCPro cannot control CV_1 to its setpoint. The case on the left has all CVs at the same priority, however, SMOCPro identifies that the only handle that can modify CV_1 is not available for control and removes CV_1 from the control problem. The reachable target for CV_1 is shown as a long-dashed red line that keeps being relaxed. The behavior is identical to the case where the CV priorities are staggered shown on the right side. This is irrelevant in this scenario since the only MV_1 capable of regulating CV_1 is not available.
2016.5.27