可视化 | Pyecharts象形柱图--图例自定义

大家好
在可视化展示过程中,为了达到更形象的展示效果,我们往往需要自定义一些直观的图例,本期给大家介绍可视化库Pyecharts中的象形柱图,希望对你有所帮助。


准备工作

1.1 导入模块

from pyecharts import options as opts
from pyecharts.charts import PictorialBar
from pyecharts.globals import SymbolType

没有安装pyecharts的,直接pip安装即可。

1.2 部分参数

def add_yaxis(
    # 系列名称
    series_name: str,

    # 系列数据
    y_axis: Sequence,

    # 图形类型
    symbol: Optional[str] = None,

    # 图形的大小
    symbol_size: Union[Numeric, Sequence, None] = None,

    # 图形的定位位置
    symbol_pos: Optional[str] = None,

    # 图形相对于原本位置的偏移
    symbol_offset: Optional[Sequence] = None,

    # 图形的旋转角度
    symbol_rotate: Optional[Numeric] = None,

    # 是否剪裁图形
    is_symbol_clip: bool = False,

    # 系列 label 颜色
    color: Optional[str] = None,

    # 同一系列的柱间距离,默认为类目间距的 10%,可设固定值
    category_gap: Union[Numeric, str] = "10%",

    # 标签配置项,参考 `series_options.LabelOpts`
    label_opts: Union[opts.LabelOpts, dict] = opts.LabelOpts(),
)
基础象形图

部分省市人口数量:

province = ["北京", "天津", "湖北", "山西", "上海", "内蒙古", "云南", "黑龙江", "广东", "福建"]
values = [2189, 1386, 5775, 3491, 2487, 2404, 4720, 3185, 12601, 4154]
c = (
    PictorialBar()
    .add_xaxis(province)
    .add_yaxis(
        "",
        values,
        label_opts=opts.LabelOpts(is_show=False),
        symbol_size=18,
        symbol_repeat="fixed",
        symbol_offset=[0, 0],
        is_symbol_clip=True,
        symbol=SymbolType.ARROW,
    )
    .reversal_axis()
    .set_global_opts(
        title_opts=opts.TitleOpts(title="省份人口数量(万人)"),
        xaxis_opts=opts.AxisOpts(is_show=True),
        yaxis_opts=opts.AxisOpts(
            axistick_opts=opts.AxisTickOpts(is_show=False),
            axisline_opts=opts.AxisLineOpts(
                linestyle_opts=opts.LineStyleOpts(opacity=0)
            ),
        ),
    )
)
c.render_notebook()

效果:


symbol样式可选: RECT、ROUND_RECT、TRIANGLE、DIAMOND、ARROW。

设置为“DIAMOND”效果如下:


数据来自之前文章:可视化 | 第七次人口普查数据分析可视化(Pandas+Pyecharts)

  1. 自定义图例

3.1 图片图例


3.2 生成象形图

代码:

c = (
    PictorialBar()
    .add_xaxis(list(dic.keys()))
    .add_yaxis(
        "2020",
        [
            {"value": 18, "symbol": dic['飞机']},
            {"value": 40, "symbol": dic['火车']},
            {"value": 78, "symbol": dic['汽车']},
            {"value": 66, "symbol": dic['轮船']},
        ],
        label_opts=opts.LabelOpts(is_show=False),
        symbol_size=22,
        symbol_repeat="fixed",
        symbol_offset=[0, 5],
        is_symbol_clip=True,
    )
    .add_yaxis(
        "2021",
        [
            {"value": 54, "symbol": dic['飞机']},
            {"value": 68, "symbol": dic['火车']},
            {"value": 105, "symbol": dic['汽车']},
            {"value": 73, "symbol": dic['轮船']},
        ],
        label_opts=opts.LabelOpts(is_show=False),
        symbol_size=22,
        symbol_repeat="fixed",
        symbol_offset=[0, -25],
        is_symbol_clip=True,
    )
    .reversal_axis()
    .set_global_opts(
        title_opts=opts.TitleOpts(title="城市交通工具"),
        xaxis_opts=opts.AxisOpts(is_show=False),
        yaxis_opts=opts.AxisOpts(
            axistick_opts=opts.AxisTickOpts(is_show=False),
            axisline_opts=opts.AxisLineOpts(
                linestyle_opts=opts.LineStyleOpts(opacity=0)
            ),
        ),
    )
)
c.render_notebook()

效果:


完。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,125评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,293评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,054评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,077评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,096评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,062评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,988评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,817评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,266评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,486评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,646评论 1 347
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,375评论 5 342
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,974评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,621评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,796评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,642评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,538评论 2 352

推荐阅读更多精彩内容