DL notes[3]: classifier significance test

0. Cross Validation

  • k-fold cross-validation randomly divides the data into k blocks of roughly equal size. Each of the blocks is left out in turn and the other k-1 blocks are used to train the model.

  • Repeated k-fold CV does the same as above but more than once, producing different splits in each repetition. For example, five repeats of 10-fold CV would give 50 total resamples that are averaged. Note this is not the same as 50-fold CV.

# RepeatedKFold repeats K-Fold n times. 
# It can be used when one requires to run KFold n times, 
# producing different splits in each repetition.
# https://scikit-learn.org/stable/modules/cross_validation.html
import numpy as np
from sklearn.model_selection import RepeatedKFold
X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]])
random_state = 12883823
rkf = RepeatedKFold(n_splits=2, n_repeats=2, random_state=random_state)
for train, test in rkf.split(X):
    print("%s %s" % (train, test))
  • Leave Group Out cross-validation (LGOCV), aka Monte Carlo CV, randomly leaves out some set percentage of the data B times. It is similar to min-training and hold-out splits but only uses the training set.

  • The bootstrap takes a random sample with replacement from the training set B times. Since the sampling is with replacement, there is a very strong likelihood that some training set samples will be represented more than once. As a consequence of this, some training set data points will not be contained in the bootstrap sample. The model is trained on the bootstrap sample and those data points not in that sample are predicted as hold-outs.

http://appliedpredictivemodeling.com/blog/2014/11/27/vpuig01pqbklmi72b8lcl3ij5hj2qm
https://stats.stackexchange.com/questions/218060/does-repeated-k-fold-cross-validation-give-the-same-answers-each-time

1. Nonparametric Statistical Significance Tests in Python

Friedman Test
If the samples are paired in some way, such as repeated measures, then the Kruskal-Wallis H test would not be appropriate. Instead, the Friedman test can be used, named for Milton Friedman.

The Friedman test is the nonparametric version of the repeated measures analysis of variance test, or repeated measures ANOVA. The test can be thought of as a generalization of the Kruskal-Wallis H Test to more than two samples.

# Friedman test
from numpy.random import seed
from numpy.random import randn
from scipy.stats import friedmanchisquare
# seed the random number generator
seed(1)
# generate three independent samples
data1 = 5 * randn(100) + 50
data2 = 5 * randn(100) + 50
data3 = 5 * randn(100) + 52
# compare samples
stat, p = friedmanchisquare(data1, data2, data3)
print('Statistics=%.3f, p=%.3f' % (stat, p))
# interpret
alpha = 0.05
if p > alpha:
    print('Same distributions (fail to reject H0)')
else:
    print('Different distributions (reject H0)')

https://machinelearningmastery.com/nonparametric-statistical-significance-tests-in-python/

2. Wilcoxon signed-rank test

The Wilcoxon signed-rank test is the non-parametric univariate test which is an alternative to the dependent t-test. It also is called the Wilcoxon T test, most commonly so when the statistic value is reported as a T value.

from scipy import stats
stats.wilcoxon(df['bp_before'], df['bp_after'])

https://pythonfordatascience.org/wilcoxon-sign-ranked-test-python/

3. Post-hoc Test

假设我们通过Friedman test发现有统计学显著(p<0.05),那么我们还需要继续做事后分析(post-hoc)。换句话说,Friedman test只能告诉我们算法间是否有显著差异,而不能告诉我们到底哪些算法间有性能差异。想要定位具体的差异算法,还需要进行post-hoc分析。
python package: scikit-posthocs, Orange

import scikit_posthocs as sp
import numpy as np
tot_data = np.array([[1,2,3], [4,5,6,7],[6,7,8,9,10])
sp.posthoc_nemenyi(tot_data)

即便Friedman test发现有统计学显著,直接用Nemernyi/conover Test/Wilcoxon signed-rank test未必能得到相同的结论(即p<0.05),可以手动的两两比较。
https://www.zhihu.com/question/27306416/answer/372241948

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,734评论 6 505
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,931评论 3 394
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,133评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,532评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,585评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,462评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,262评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,153评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,587评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,792评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,919评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,635评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,237评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,855评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,983评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,048评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,864评论 2 354

推荐阅读更多精彩内容

  • rljs by sennchi Timeline of History Part One The Cognitiv...
    sennchi阅读 7,331评论 0 10
  • 中午热的饺子有点多,我还是全吃了,还喝了一袋牛奶。后来忽然问自己:这就是你爱自己的方式吗? 爱自己,应该把自己的身...
    liuyingli阅读 134评论 0 0
  • 今天早上中午就不说了。 夜晚的学习到2样重要的东西。 1初心,做外汇的,忘记了标准周期,和市场的v5了。活该亏钱 ...
    DeathKnightR阅读 221评论 0 0
  • 姓名:刘小琼 公司:宁波大发化纤有限公司 宁波盛和塾《六项精进》第235期学员 【日精进打卡第25天】 知~学习 ...
    刘小琼123阅读 94评论 0 0
  • 一个人,还是一个人 若有所思,若有所失 又到晚饭时间 按照惯例 一个苹果,一碗粉 俯首感谢阳光 我趴在小小的窗前 ...
    菀茹阅读 398评论 7 8