网络:TCP/IP协议总结

标签: 网络


1、TCP/IP:
TCP/IP协议集包括应用层,传输层,网络层,网络访问层。

  • 应用层协议:

    • 超文本传输协议(HTTP):万维网的基本协议,基于tcp
    • 文件传输(TFTP简单文件传输协议): FTP基于TCP,而TFTP基于UDP
    • 远程登录(Telnet),提供远程访问其它主机功能,它允许用户登录 internet主机,并在这台主机上执行命令.
    • 网络管理(SNMP简单网络管理协议),该协议提供了监控网络设备的方法,以及配置管理,统计信息收集,性能管理及安全管理等,基于UDP
    • 域名系统(DNS),该系统用于在internet中将域名及其公共广播的网络节点转换成IP地址,基于UDP
  • 网络层协议:

    • Internet协议(IP)
    • Internet控制信息协议(ICMP)
    • 地址解析协议(ARP)
    • 反向地址解析协议(RARP)
  • 网络访问层:网络访问层又称作主机到网络层(host-to-network).网络访问层的功能包括IP地址与物理地址硬件的映射,以及将IP封装成帧.基于不同硬件类型的网络接口,网络访问层定义了和物理介质的连接.

  • 传输层:
    TCP(Transmission Control Protocol,传输控制协议):TCP是面向连接的协议,也就是说,在收发数据前,必须和对方建立可靠的连接。一个TCP连接必须要经过三次“对话”才能建立起来
    TCP的包头结构:

    • 源端口 16位
    • 目标端口 16位
    • 序列号 32位
    • 回应序号 32位
    • TCP头长度 4位
    • reserved 6位
    • 控制代码 6位
    • 窗口大小 16位
    • 偏移量 16位
    • 校验和 16位
    • 选项 32位(可选)
    • 这样我们得出了TCP包头的最小长度,为20字节。
  • UDP(User Data Protocol,用户数据报协议)

    • UDP是一个非连接的协议,传输数据之前源端和终端不建立连接,当它想传送时就简单地去抓取来自应用程序的数据,并尽可能快地把它传到网络上。在发送端,UDP传送数据的速度仅仅是受应用程序生成数据的速度、计算机的能力和传输带宽的限制;在接收端,UDP把每个消息段放在队列中,应用程序每次从队列中读一个消息段。
    • 由于传输数据不建立连接,因此也就不需要维护连接状态,包括收发状态等,因此一台服务机可同时向多个客户机传输相同的消息。
    • UDP信息包的标题很短,只有8个字节,相对于TCP的20个字节信息包的额外开销很小。
    • 吞吐量不受拥挤控制算法的调节,只受应用软件生成数据的速率、传输带宽、源端和终端主机性能的限制。
  • UDP使用尽最大努力交付,即不保证可靠交付,因此主机不需要维持复杂的链接状态表(这里面有许多参数)。

  • UDP是面向报文的。发送方的UDP对应用程序交下来的报文,在添加首部后就向下交付给IP层。既不拆分,也不合并,而是保留这些报文的边界,因此,应用程序需要选择合适的报文大小。

  • 我们经常使用“ping”命令来测试两台主机之间TCP/IP通信是否正常,其实“ping”命令的原理就是向对方主机发送UDP数据包,然后对方主机确认收到数据包,如果数据包是否到达的消息及时反馈回来,那么网络就是通的。

  • UDP的包头结构:

    • 源端口 16位
    • 目的端口 16位
    • 长度 16位
    • 校验和 16位

UDP用于包含量较少的通信(DNS、SNMP)、视频、音频等多媒体通信(即使通信)、限定LAN等特定网络中的应用通信、广播通信(广播、多播)

TCP与UDP的区别:
1. 基于连接与无连接;
2. 对系统资源的要求(TCP较多,UDP少);
3. UDP程序结构较简单;
4. 流模式与数据报模式 ;
5. TCP保证数据正确性,UDP可能丢包,TCP保证数据顺序,UDP不保证


2、TCP三次握手/四次挥手:

  • TCP三次握手:TCP是传输层协议,在进行数据传输之前使用三次握手协议建立连接,大体的过程是客户端发出SYN连接请求后,服务端接收请求后应答SYN+ACK,客户端收到服务端应答后应答ACK,这种建立连接的方法可以防止产生错误的连接,防止已失效的连接请求报文段突然又传送到了服务端。TCP三次握手过程图示如下:
握手.png
  • TCP三次握手过程描述如下:
    1、客户端发送SYN标志位为1,Sequence Number为x的连接请求报文段,然后客户端进入SYN_SEND状态,等待服务器的确认响应;
    2、服务器收到客户端的连接请求,对这个SYN报文段进行确认,然后发送Acknowledgment Number为x+1(SequenceNumber+1),SYN标志位和ACK标志位均为1,Sequence Number为y的报文段(即SYN+ACK报文段)给客户端,此时服务器进入SYN_RECV状态;
    3、客户端收到服务器的SYN+ACK报文段,确认ACK后,发送Acknowledgment Number为y+1,SYN标志位为0,ACK标志位为1的报文段,发送完成后,客户端和服务器端都进入ESTABLISHED状态,完成TCP三次握手,客户端和服务器端成功地建立连接,可以开始传输数据了

  • 已失效的连接请求报文段:
    client发出的第一个连接请求报文段并没有丢失,而是在某个网络结点长时间的滞留了,以致延误到连接释放以后的某个时间才到达server。本来这是一个早已失效的报文段,但server收到此失效的连接请求报文段后,就误认为是client再次发出的一个新的连接请求。于是就向client发出确认报文段,同意建立连接

  • 两次握手存在的问题:
    当A想要建立连接时发送一个SYN,然后等待ACK,结果这个SYN因为网络问题没有及时到达B,所以A在一段时间内没收到ACK后,在发送一个SYN,B也成功收到,然后A也收到ACK,这时A发送的第一个SYN终于到了B,对于B来说这是一个新连接请求,然后B又为这个连接申请资源,返回ACK,然而这个SYN是个无效的请求,A收到这个SYN的ACK后也并不会理会它,而B却不知道,B会一直为这个连接维持着资源,造成资源的浪费

  • 四次握手存在的问题:建立的时间过长,效果会打折扣,3次握手时折中方案,保证了可靠性又节俭了建立连接的时间


  • TCP四次挥手:
    当数据传送完成后,为了正确完整的完成数据传输,需要经过四次挥手断开连接。TCP四次挥过程图示如下:
挥手.png
  • TCP四次挥手过程描述如下:
    1、客户端发送Sequence Number为x+2,Acknowledgment Number为y+1的FIN报文段,客户端进入FIN_WAIT_1状态,即告诉服务端没有数据需要传输了,请求关闭连接;
    2、服务端收到客户端的FIN报文段后,向客户端应答一个Acknowledgment Number为Sequence Number+1的ACK报文段,即应答客户端你的请求我收到了,但是我还没准备好,请等待我的关闭请求。客户端收到后进入FIN_WAIT_2状态;
    3、服务端完成数据传输后向客户端发送Sequence Number为y+1的FIN报文段,请求关闭连接,服务器进入LAST_ACK状态;
    4、客户端收到服务端的FIN报文段后,向服务端应答一个Acknowledgment Number为Sequence Number+1的ACK报文段,然后客户端进入TIME_WAIT状态;服务端收到客户端的ACK报文段后关闭连接进入CLOSED状态,客户端等待2MSL后依然没有收到回复,则证明服务端已正常关闭,客户端此时关闭连接进入CLOSED状态。

3、TCP长连接/短连接:
长连接:长连接指的是一个TCP连接上可以连续发送多个数据包,在TCP连接保持期间,如果没有数据包发送,需要双方发检测包以维持连接,一般需要自己做在线维持(不发RET包和四次挥手)


连接--->数据传输--->保持连接(心跳)--->数据传输--->保持连接(心跳)--->...--->关闭连接(一个TCP连接通道多个读写通信)


这要求长连接在没有数据通信时,定时发送数据包(心跳),以维持连接状态

TCP保活功能:由服务器提供,服务器应用希望知道客户主机是否崩溃,从而可以代表客户使用资源。如果客户已经消失,使得服务器上保留一个半开放的连接,而服务器又在等待来自客户端的数据,则服务器将应远等待客户端的数据,保活功能就是试图在服务器端检测到这种半开放的连接。
如果一个给定的连接在两小时内没有任何的动作,则服务器就向客户发一个探测报文段,客户主机必须处于以下4个状态之一:

  • 客户主机依然正常运行,并从服务器可达。客户的TCP响应正常,而服务器也知道对方是正常的,服务器在两小时后将保活定时器复位。
  • 客户主机已经崩溃,并且关闭或者正在重新启动。在任何一种情况下,客户的TCP都没有响应。服务端将不能收到对探测的响应,并在75秒后超时。服务器总共发送10个这样的探测,每个间隔75秒。如果服务器没有收到一个响应,它就认为客户主机已经关闭并终止连接。
  • 客户主机崩溃并已经重新启动。服务器将收到一个对其保活探测的响应,这个响应是一个复位,使得服务器终止这个连接。
  • 客户机正常运行,但是服务器不可达,这种情况与2类似,TCP能发现的就是没有收到探查的响应。

短连接:短连接是指通信双方有数据交互时,就建立一个TCP连接,数据发送完成后,则断开此TCP连接(管理起来比较简单,存在的连接都是有用的连接,不需要额外的控制手段)


连接→数据传输→关闭连接


  • 应用场景:
  • 长连接多用于操作频繁(读写),点对点的通讯,而且连接数不能太多情况。每个TCP连接都需要三步握手,这需要时间,如果每个操作都是先连接,再操作的话那么处理速度会降低很多,所以每个操作完后都不断开,次处理时直接发送数据包就可以了,不用建立TCP连接。例如:数据库的连接用长连接, 如果用短连接频繁的通信会造成socket错误,而且频繁的socket 创建也是对资源的浪费。
  • 而像WEB网站的http服务一般都用短链接(http1.0只支持短连接,1.1keep alive 带时间,操作次数限制的长连接),因为长连接对于服务端来说会耗费一定的资源,而像WEB网站这么频繁的成千上万甚至上亿客户端的连接用短连接会更省一些资源,如果用长连接,而且同时有成千上万的用户,如果每个用户都占用一个连接的话,并发量很大,但每个用户无需频繁操作情况下需用短连好;
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,142评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,298评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,068评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,081评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,099评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,071评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,990评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,832评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,274评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,488评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,649评论 1 347
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,378评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,979评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,625评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,796评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,643评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,545评论 2 352

推荐阅读更多精彩内容