1-PYTHON-BAOSTOCK-A股上市公司行业分类信息

该文章仅供学习参考
数据平台为baostock,网址为:www.baostock.com

目前baostock平台只有申万一级行业分类,如果想要了解更多的行业分类可以

参考以下网站:
1.巨潮资讯网-数据中心-数据浏览器-高级搜索
http://webapi.cninfo.com.cn/#/dataBrowse

证监会行业分类
http://www.csrc.gov.cn/pub/newsite/scb/ssgshyfljg/

下面是如何用baostock获取A股上市公司行业分类数据的代码:

1.更改当前工作路径

import os
# os.getcwd() 获取当前工作路径
os.chdir(r'E:\行业分析')
os.getcwd()

2.调用接口获取全行业信息

import baostock as bs
import pandas as pd
# 登陆系统
lg = bs.login()
# 显示登陆返回信息
print('login respond error_code:'+lg.error_code)
print('login respond  error_msg:'+lg.error_msg)

# 获取行业分类数据
rs = bs.query_stock_industry()#获取全行业信息
# rs = bs.query_stock_basic(code_name="浦发银行")
print('query_stock_industry error_code:'+rs.error_code)
print('query_stock_industry respond  error_msg:'+rs.error_msg)

# 打印结果集
industry_list = []
while (rs.error_code == '0') & rs.next():
    # 获取一条记录,将记录合并在一起
    industry_list.append(rs.get_row_data())
result = pd.DataFrame(industry_list, columns=rs.fields)
# 结果集输出到csv文件
result.to_csv("stock_industry.csv", encoding="gbk", index=False)
#保存到当前工作路径

# 或结果集输出到excel文件
result.to_excel("stock_industry.xlsx", encoding="gbk", index=False)

# 登出系统
bs.logout()
image.png

可能需要等待一定的时间
若使用jupyternotebook可以预览数据框的信息


image.png

可以看到这里有一些空值,这些公司可能因为有一些问题(可能是面临退市之类的)
等一下我们用“分类缺失”填充这些公司的分类。

3.整理各行业股票代码,导出到csv

需要提前建好各行业股票代码的文件夹!!!!


image.png
#读入上面保存的文件
df=pd.read_csv('stock_industry.csv',encoding="gbk")

#填充分类缺失
df['industry'].fillna('分类缺失',inplace=True)

#取行业名称
industry=df['industry'].value_counts()
a=industry.index[:]
industry_list=list(a)

#保存各行业股票代码到文件夹
for i in industry_list:
    df_industry=df[df['industry']==i]
    df_industry.to_csv('E:\\行业分析\\各行业股票代码\\'+i+'.csv')

最后就可以得到各行业的股票代码等数据了


image.png
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,732评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,496评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,264评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,807评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,806评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,675评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,029评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,683评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,704评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,666评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,773评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,413评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,016评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,978评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,204评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,083评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,503评论 2 343

推荐阅读更多精彩内容