【Spark Java API】Transformation(1)—mapPartitions、mapPartitionsWithIndex

mapPartitions


官方文档描述:

 Return a new RDD by applying a function to each partition of this RDD.

**
mapPartitions函数会对每个分区依次调用分区函数处理,然后将处理的结果(若干个Iterator)生成新的RDDs。
mapPartitions与map类似,但是如果在映射的过程中需要频繁创建额外的对象,使用mapPartitions要比map高效的过。比如,将RDD中的所有数据通过JDBC连接写入数据库,如果使用map函数,可能要为每一个元素都创建一个connection,这样开销很大,如果使用mapPartitions,那么只需要针对每一个分区建立一个connection。
**

函数原型:

def mapPartitions[U](f:FlatMapFunction[java.util.Iterator[T], U]): JavaRDD[U]
def mapPartitions[U](f:FlatMapFunction[java.util.Iterator[T], U],
preservesPartitioning: Boolean): JavaRDD[U]

**
第一个函数是基于第二个函数实现的,使用的是preservesPartitioning为false。而第二个函数我们可以指定preservesPartitioning,preservesPartitioning表示是否保留父RDD的partitioner分区信息;FlatMapFunction中的Iterator是这个rdd的一个分区的所有element组成的Iterator。
**

实例

List<Integer> data = Arrays.asList(1, 2, 4, 3, 5, 6, 7);
//RDD有两个分区
JavaRDD<Integer> javaRDD = javaSparkContext.parallelize(data,2);
//计算每个分区的合计
JavaRDD<Integer> mapPartitionsRDD = javaRDD.mapPartitions(new FlatMapFunction<Iterator<Integer>, Integer>() {   
 @Override
 public Iterable<Integer> call(Iterator<Integer> integerIterator) throws Exception {
        int isum = 0;
        while(integerIterator.hasNext())
            isum += integerIterator.next();
        LinkedList<Integer> linkedList = new LinkedList<Integer>();
        linkedList.add(isum);
        return linkedList;    }
});

System.out.println("mapPartitionsRDD~~~~~~~~~~~~~~~~~~~~~~" + mapPartitionsRDD.collect());

mapPartitionsWithIndex


官方文档说明:

 Return a new RDD by applying a function to each partition of this RDD, while tracking the index of the original partition.

**
mapPartitionsWithIndex与mapPartitions基本相同,只是在处理函数的参数是一个二元元组,元组的第一个元素是当前处理的分区的index,元组的第二个元素是当前处理的分区元素组成的Iterator
**

函数原型:

def mapPartitionsWithIndex[R]( f:JFunction2[jl.Integer, java.util.Iterator[T], 
java.util.Iterator[R]],
preservesPartitioning: Boolean = false): JavaRDD[R]

源码分析:

def mapPartitions[U: ClassTag](f:Iterator[T] => Iterator[U],  
preservesPartitioning:Boolean = false): RDD[U] = withScope {  
val cleanedF = sc.clean(f)  
new MapPartitionsRDD(this,  (context: TaskContext, index: Int, iter: Iterator[T]) => cleanedF(iter), 
preservesPartitioning)
}
def mapPartitionsWithIndex[U: ClassTag]( f: (Int, Iterator[T]) => Iterator[U],
preservesPartitioning: Boolean = false): RDD[U] = withScope {  
val cleanedF = sc.clean(f)  
new MapPartitionsRDD(this,  (context: TaskContext, index: Int, iter: Iterator[T]) => 
cleanedF(index, iter),    
preservesPartitioning)
}

**
从源码中可以看到其实mapPartitions已经获得了当前处理的分区的index,只是没有传入分区处理函数,而mapPartitionsWithIndex将其传入分区处理函数。
**

实例:

List<Integer> data = Arrays.asList(1, 2, 4, 3, 5, 6, 7);
//RDD有两个分区
JavaRDD<Integer> javaRDD = javaSparkContext.parallelize(data,2);
//分区index、元素值、元素编号输出
JavaRDD<String> mapPartitionsWithIndexRDD = javaRDD.mapPartitionsWithIndex(new Function2<Integer, Iterator<Integer>, Iterator<String>>() {
 @Override 
public Iterator<String> call(Integer v1, Iterator<Integer> v2) throws Exception {        
  LinkedList<String> linkedList = new LinkedList<String>();        
  int i = 0;        
  while (v2.hasNext())            
   linkedList.add(Integer.toString(v1) + "|" + v2.next().toString() + Integer.toString(i++));        
  return linkedList.iterator();    
  }
},false);

System.out.println("mapPartitionsWithIndexRDD~~~~~~~~~~~~~~~~~~~~~~" + mapPartitionsWithIndexRDD.collect());
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,490评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,581评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,830评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,957评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,974评论 6 393
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,754评论 1 307
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,464评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,357评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,847评论 1 317
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,995评论 3 338
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,137评论 1 351
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,819评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,482评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,023评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,149评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,409评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,086评论 2 355

推荐阅读更多精彩内容