2020-10-19 推荐系统简介

推荐系统的各个评价指标

1、用户满意度

解释:最重要的指标,无法离线计算,只能通过在线调查或者在线实验获得。

如何获得用户满意度?

1、通过在系统上设置相应反馈按钮,实时评价此次推荐结果的好坏

2、通过点击率、停留时间和转化率等其他指标评价用户满意度


2、预测准确度

解释:最重要的离线指标,常见的评价指标有评分预测和TopN   

2.1 评分预测

包括五星评分、百分评分、好评评分等一系列由用户打分的可量化指标。    

一般通过RMSE和MSE来计算并优化

2.2TopN

解释:推荐给用户一个含由N个选项的个性化列表

预测指标的优劣?

1、量化的评分预测是非常好的可优化对象,可解释性更强。

2、通常情况下,在推荐系统的初期以及新加入的物品,由于大部分物品没有评分,倾向于使用TopN算法构建排行榜,解决冷启动问题。

3、当推荐系统需要引入商业推广时,作为可以人为调节商品权重和展示内容的TopN,更方便操作。


3、覆盖率

解释:推荐系统可推荐的物品占总物品集合的比例

一个好的推荐系统不仅需要比较高的用户满意度,也需要较高的覆盖率。

推荐系统的马太效应可以使用基尼系数来验证。


4、多样性

解释:多样性表明了推荐列表中两两物品之间的不相似性。

5、新颖性

解释:给用户推荐没听过的物品

在我看来,这两个指标属于更高一级的指标,一个好的推荐系统不能没有多样性和新颖性,而一旦考虑这两个指标势必会使推荐的精度下降


*6、惊喜度

解释:简单理解惊喜度就是物品相似度与用户满意度之间的一个平衡,即推荐的物品和用户历史中的物品都不怎么相似,但是用户很满意。

需要和新颖性区分的是,虽然两者都是降低推荐结果的相似度,但惊喜度是一个正向的指标,提高惊喜度意味着提高用户满意度。

*7、信任度

解释:利用好友推荐或增加推荐解释,有助于提高用户对推荐系统的信任和对推荐结果的接受程度。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,335评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,895评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,766评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,918评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,042评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,169评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,219评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,976评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,393评论 1 304
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,711评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,876评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,562评论 4 336
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,193评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,903评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,142评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,699评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,764评论 2 351