李爱玲老师的这节课,在整个教学设计上体现“以学生发展为本”的教育理念。主要围绕“什么是三角形的内角和”、“为什么三角形的内角和是180度”问题意识展开教学,通过“有根据的猜想——多种方式、全类型验证{自主探究}”的研究方法,引领学生参与、体验,勤思考,善研究,也能成为“未来小数学家”,继而实现学科育人的价值。教学中,李老师以激励性的评价语言,引导学生动手实践、自主探究、合作交流。充分发挥多媒体教学的优势,把静态的课本知识转化为动态的教学内容。实现教法、学法的最优结合。主要体现在五个方面。
1. 巧用激趣,学贵知疑
教学的艺术不在于传授知识,而在于唤醒、激发和鼓励。上课时,李老师通过猜谜语吸引注意力,紧接着三类三角形对自己内角和度数大小的不同看法的争执,引出疑问和矛盾,提出问题,激发学生探索的欲望,自然而然揭示出课题。
2.以旧带新,巧用猜想
李老师从学生已有知识经验出发,让学生说说三角板每个角的度数,并求出它们的内角和是180°。接着让学生猜想:是不是所有三角形内角和都是180度?这是猜想是建立在“有根据的猜想”上,体现数学的理性思维。也为后边的探究和验证活动设立了明确的方向。
3.适时追问,自主探究
课堂中老师把大量的时间和空间留给学生,多种方式让孩子们开展针对性的数学探究活动,即:量一量、拼一拼,折一折。在活动中,鼓励学生积极动脑,敢于思考,从不同的途径探究解决问题的方法。首先让学生动手测量不同类型的三角形内角和,在不同的结果中,帮助学生清楚地认识到:测量时会产生误差,造成结果不统一。“没有得到统一的结果,是不是这个猜想有问题?这个办法不能使人信服怎么办?还有没有其它更好的办法呢”这几个恰到好处的追问,激活了学生的探究欲望,使第二次活动显得自然,达到水到渠成的效果。接下来学生通过撕一撕、拼一拼再次验证新知识。既保住三角形的完整性,又很顺利的过渡到第三次活动,把三个角折成一个平角。这样的问题追问,不仅提高了操作效果,更重要的是在操作过程中学生对所学知识产生了深刻的体验。活动中,把放手探究和适时追问有机结合,鼓励学生换种角度,从不同的途径探究解决问题的方法。整个活动,每个学生既自主参与验证活动,而且在活动中借助“观察、操作、分析、推理、归纳”过程,培养了学生解决问题,发展空间观念和论证推理能力。
4.善于引导,巩固内化
学习,学习,学得知识,习得能力。“熟能生巧”。数学要掌握知识,形成技能技巧,一定离不开练习。良好思维品质的养成也需要通过一定量的思考练习。如何提高练习的有效性?李老师在设计练习时,既注重及时判断、巩固知识,又设计出不同层次的练习题,将数学思考融入不同的练习之中。第一题让学生判断有两个小三角形拼成的三角形的内角和的度数,使学生在图形变化的过程中进一步在辨析中巩固“内角和”的概念,培养思维的灵活性,从中发展学生的空间观念和空间想象能力。第二题给出一个三角形的两个角度,求第三个角。在学生独立完成中,培养学生应用意识和解决问题的能力;这些练习设计目的明确,针对性强,使学生不但巩固了知识,更重要的是数学思维得到发展。
[if !supportLists]5. [endif]数学文化,育人熏陶
孩子们参与活动、亲身体验了一个数学结论的研究过程。如何发挥学科育人的价值?李老师在此适时引入数学家“帕斯卡”的故事,借助此故事,渗透“有根据的猜想,并敢于验证探究,得出结论,进而运用”,也能如帕斯卡,成为未来的数学家的学科育人价值引领。
总得来说,本节课教以学生发展为本,以学生为主体,数学思维、方法能力培养为主线;充分关注学生的自主探究与合作交流;不光落实发展知识技能,还借助知识的载体,体验“猜想——验证——运用”的研究方法,达到理性思考,培养知识育人的能力。总得来说,不仅把传授知识,更重要的是让学生从“学会知识”转变为“会学知识”,达到学科育人的价值。