## 概述
![snijlab](https://baseframe.snijlab.nl/projbase/files/69/large/snijlab4.jpg)
![snijlab1](https://baseframe.snijlab.nl/projbase/files/69/large/snijlabbooklet-photo-credits-Peter-van-Dijk-01.jpg)2011年10月,荷兰的一家激光雕刻定制公司([Snijlab](https://snijlab.nl/en))应用激光切割技术开发出了一款可折叠的木质书夹。采用这种新工艺,通过激光对多层板切割,实现了坚硬木板的弯曲折叠。这种工艺被称为Snijlab铰链,激光切割合页(lacer cut living hinges) **激光切割的格栅式合页**(lattice living hinges)。![MEMS](http://compliantmechanisms.byu.edu/sites/compliantmechanisms.byu.edu/files/image/Fig4.jpg)该设计的灵感可能来自微机电系统[ **MEMS** ](http://compliantmechanisms.byu.edu/content/introduction-microelectromechanical-systems-mems)的微铰链装置。![Kerf](https://i1.wp.com/cdn.makezine.com/uploads/2009/06/3-the-resulting-curve.jpg)锯口折弯( **Kerf bending** )技术,另一个可能的灵感,所以也有人称该工艺为Laser Kerf Bending。## 格栅式合页的相关研究[braclet2.skp](file:///C:\Users/Administrator/Documents/braclet2.skp)外科技术### Patrick Fenner对格栅式合页的材料力学研究[(参见相关链接)](#Patrick)。(另有自制的PDF文件 )#### 格栅式合页的形变机制![单联](http://www.deferredprocrastination.co.uk/blog/uploads/2011/12/lattice_hinge_basic.png)![单联压力](http://www.deferredprocrastination.co.uk/blog/uploads/2011/12/lattice_hinge_compressed.png)![单联拉力](http://www.deferredprocrastination.co.uk/blog/uploads/2011/12/lattice_hinge_extended.png)单链合页及其在压力和拉力作用下的形变。---![bujian](http://www.deferredprocrastination.co.uk/blog/uploads/2011/12/lattice_hinge_parts.png)合页的部件:外横联,内横联及弹性纵连。---![curve](http://www.deferredprocrastination.co.uk/blog/uploads/2011/12/lattice_hinge_curve.png)由于横联的形变很小可以忽略不计。在合页发生形变时,主要作用力发生在弹性纵连包括:纵连内侧的所承受的压力和外侧所承受的拉力,以及与横联相邻的纵连部分由于旋转角度不同而所承受的扭力。#### 格栅式合页的材料力学公式推导:通过对不同材料纵连所受应力的计算,进一步推导出每个纵连所受的应力,进而为设计不同材料合页的连接的大小,密度等参数提供量化的理论依据,以确保所设计的格栅式合页能够正常的使用而不发生折断。当每个纵连所承受的应力低于材料的屈服强度时,合页能够灵活地折曲。当然这种形变是暂时的,一旦应力消失,合页就会复原为平板状态(忽略塑料等合成材料的蠕变)。在这种状态下,材料还具有更好的抗疲劳性能,这样合页就能够被多次折曲而不会断裂,这一点对亚克力材料尤为重要。根据材料力学的[扭力公式][1],参考[亚克力材料的力学性能参数][2]得到了:#####**公式一**:单个纵连的最小连接数和连接长度的公式:$n \geq 0.676125 \times \frac{\Theta G t}{\tau_{yield} l}$ ##### 公式二:合页的最小间隙宽度:$k = -t + 2 \sqrt{ \frac{t^2}{2} } \times \cos \left( \frac{\pi}{4} - \frac{\Theta}{n} \right)$ ##### 公式三:合页的宽度:$W = tn + k(n+1)$##### 公式四:为了维持合页的扭力,纵连的长度应小于等于板材厚度的4倍:$l \leq 4t$##### 公式五:合页的最小折曲半径:$r_{inner} = \frac{2W}{\Theta}-\frac{t}{2}$$r_{outer} = \frac{2W}{\Theta}+\frac{t}{2}$* k=间隙宽度(m)* W=合页的总宽度(m)* T=扭矩(Nm)* l=连接长度(m)* G=材料的扭转模量(Pa)* J′=非圆截面的极惯性矩(m4)* τ=扭应力(Pa)* t=材料厚度(m)* n=纵连的连接数* θ=单个纵连的扭转角(弧度)* Θ=整个合页的扭转角度(Θ=θ×n)#### 格栅式合页材料力学的验证实验将[亚克力材料的参数][3]代入[公式一](#formal1):* $t= 0.003 m (3mm)$* $G= 2 \times 10^9 Pa (2GPa)$* $\tau_{yield}= 60 \times 10^6 Pa (60MPa)$* $\Theta= \pi{}/2 rad (90°)$得到:* $ l = 5mm; n_{min} = 21.2 (22)$* $ l = 10mm; n_{min} = 10.6 (11)$* $ l = 20mm; n_{min} = 5.3 (6)$* $ l = 30mm; n_{min} = 3.5 (4)$亚克力材料纵连长度和连接数的关系:![亚克力材料纵连长度和连接数的关系][4]接着作者根据这些结果进行了验证实验:设计图纸- ![此处输入图片的描述][5]- 定制模型及实验过程此后作者根据图纸定制了3mm厚的亚克力和中密度纤维板(MDF)的格栅式合页,并进行了如下实验:![](http://www.deferredprocrastination.co.uk/blog/uploads/2011/12/Lattice_Hinge_Test_0018.jpg)![](http://www.deferredprocrastination.co.uk/blog/uploads/2011/12/Lattice_Hinge_Test_0016.jpg)![](http://www.deferredprocrastination.co.uk/blog/uploads/2011/12/Lattice_Hinge_Test_0028.jpg)![](http://www.deferredprocrastination.co.uk/blog/uploads/2011/12/Lattice_Hinge_Test_0029.jpg)![](http://www.deferredprocrastination.co.uk/blog/uploads/2011/12/Lattice_Hinge_Test_0030.jpg)![](http://www.deferredprocrastination.co.uk/blog/uploads/2011/12/Lattice_Hinge_Test_0023.jpg)![](http://www.deferredprocrastination.co.uk/blog/uploads/2011/12/Lattice_Hinge_Test_0024.jpg)![](http://www.deferredprocrastination.co.uk/blog/uploads/2011/12/Lattice_Hinge_Test_0026.jpg)![](http://www.deferredprocrastination.co.uk/blog/uploads/2011/12/Lattice_Hinge_Test_0027.jpg)![](http://www.deferredprocrastination.co.uk/blog/uploads/2011/12/Lattice_Hinge_Test_0033.jpg)![](http://www.deferredprocrastination.co.uk/blog/uploads/2011/12/Lattice_Hinge_Test_0032.jpg)- 结果:> 所有样品均折到了90°,从而验证了公式一的可行性。> 纵连长度越长,越容易弯曲,但同时也越容易断裂。所以作者建议**纵连的长度应小于板材厚度的4倍**。#### 设计软件:* Autocad,sketchup,inkscape等。* 几个inkscape插件#### 设计示例及图纸集合:##### 图片精选:##### 图纸集:## 相关连接**Patrick Fenner的相关研究*** [Second Lattice Hinge Samples](http://www.deferredprocrastination.co.uk/blog/2013/second-lattice-hinge-samples/) January 11, 2013 * [Lattice Hinged Booklets](http://www.deferredprocrastination.co.uk/blog/2012/lattice-hinged-booklets/) December 05, 2012 * [Lattice Hinge Design — Choosing Torsional Stress](http://www.deferredprocrastination.co.uk/blog/2012/lattice-hinge-design-choosing-torsional-stress/) November 16, 2012 * [Lattice Hinge Design — Minimum Bend Radius](http://www.deferredprocrastination.co.uk/blog/2012/minimum-bend-radius/) November 09, 2012 * [Lattice Hinge Test Results](http://www.deferredprocrastination.co.uk/blog/2011/lattice-hinge-test-results/) December 23, 2011 * [Laser-cut Lattice Living Hinges](http://www.deferredprocrastination.co.uk/blog/2011/laser-cut-lattice-living-hinges/) December 16, 2011I get 10 times more traffic from [Google][6] than from [Yahoo][7] or [MSN][8]. [1]: http://www.roymech.co.uk/Useful_Tables/Torsion/Torsion.html [2]: http://www.matweb.com/search/DataSheet.aspx?MatGUID=3cb08da2a0054447a3790015b7214d07&ckck=1 [3]: http://www.matweb.com/search/DataSheet.aspx?MatGUID=3cb08da2a0054447a3790015b7214d07&ckck=1 [4]: http://www.deferredprocrastination.co.uk/blog/uploads/2011/12/Acrylic1.svg "亚克力材料纵连长度和连接数的关系" [5]: http://www.deferredprocrastination.co.uk/blog/uploads/2011/12/Lattice_Hinge_Test_3mm_Acrylic_display.svg [6]: http://google.com/ "Google" [7]: http://search.yahoo.com/ "Yahoo Search" [8]: http://search.msn.com/ "MSN Search"**