O(n2)排序算法的总结

最近在慕课网上学习了O(n2)时间复杂度的相关算法,总算是对这些算法的优缺点有了详细的特点。其实对于任何的算法,没有优点和缺点,而是有相应的特点。所以我们应该结合不同的排序环境来选择不同的排序算法,从而达到在实现时间和执行效率上的平衡。这是因为,越是简单的排序算法,实现起来肯定是越容易,而且出现BUG的概率也不会太大。相反,复杂算法可能效率更高,但是出现问题的可能性也会更大。下面,我就结合O(n2)时间复杂度的四个经典排序算法,为您详细讲解这四个算法的特点。

选择排序

定义:选择排序(Selection sort)是一种简单直观的排序算法。它的工作原理是每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部待排序的数据元素排完。

图示说明:

选择排序

源码实现:

template

void selectionSort(Tarr[],int n)

{

      for(int i = 0; i < n; i++)

      {

            int minIndex = i;

            for(int j = i; j < n; j++)

            {

                  if(arr[minIndex] >= arr[j])

                  {

                        minIndex = j;

                  }

            }

            if(minIndex != i)

            {

                  swap(&arr[minIndex], &arr[i]);

            }

      }

}

分析:通过选择排序的图示和源码我们可以看出来,选择排序要进行两次循环,而且最关键的是内层循环在每一次执行时都是全部执行完的。那我们有没有办法让内层循环不用每次都执行完呢?方法肯定是有的,这就是冒泡排序。

冒泡排序

定义:冒泡排序(Bubble Sort),是一种计算机科学领域的较简单的排序算法。它重复地走访过要排序的元素列,一次比较两个相邻的元素,如果他们的顺序(如从大到小、首字母从A到Z)错误就把他们交换过来。走访元素的工作是重复地进行直到没有相邻元素需要交换,也就是说该元素已经排序完成。

图示说明:

冒泡排序

源码实现:

template

void bubbleSort(Tarr[],intn){

      for(int i = 0; i < n; i++)

      {

            intflag= 0;

            for(intj = 0; j < n-i-1; j++)

            {

                  if(arr[j] > arr[j + 1])

                  {

                        swap(arr[j], arr[j+1]);

                        flag= 1;

                  }

            }

            if(!flag)

            {

                  break;

            }

      }

      return;

}

分析:从图示和源码可以看出来,从执行次数上来说,冒泡排序是比选择排序的循环次数更少的。那是不是就可以说,如果待排序的数组中元素比较合适,冒泡排序在时间复杂度上是不是会比选择排序更好呢?真的是这样的吗?

其实不是的,经过多次测试验证,冒泡排序基本上是比选择排序的时间复杂度要差的,这是为什么呢?从源码中我们可以很明显的看出来,虽然冒泡排序是比选择排序执行次数少了,但是交换的次数明显增多了,而如果你对计算机程序指令的实现原理只要有一个基本的认识,就应该知道交换动作比赋值动作是需要更多指令操作的。所以说,最终冒泡排序大部分情况下,比选择排序的时间复杂度都要高。

既然交换动作这么消耗资源,那有没有一种方法,即能够减少内层循环的执行次数,又可以减少甚至是无需交换操作呢?这就要请出插入排序了。

插入排序

定义:插入排序(Insertion Sort)的基本操作就是将一个数据插入到已经排好序的有序数据中,从而得到一个新的、个数加一的有序数据,即每步将一个待排序的记录,按其关键码值的大小插入前面已经排序的文件中适当位置上,直到全部插入完为止。

图示说明:

插入排序

源码实现:

template

void insertionSortX(Tarr[],int n)

{

      for(int i = 1; i < n; i++)

      {

            Te =arr[i];

            int j;

            for(j = i; j > 0 && (arr[j - 1] > e); j--)

            {

                  arr[j] =arr[j -1];

            }

            arr[j] = e;

      }

}

分析:从图示和源码可以看出来,插入排序(优化后的)是没有交换操作的,而且对于内层循环来说,如果待排序的元素是比较大的值,那内层循环执行的次数会非常的少。因此,如果原始数据基本上是有序的,那使用插入排序的效率会非常的高。在O(n2)级别的排序算法还可以再优化吗?如果可以从哪里优化呢?下面我们来介绍希尔排序,正是这个排序算法的提出,使得排序算法打破了O(n2)时间复杂度的禁锢。

希尔排序

定义:希尔排序(Shell's Sort)是插入排序的一种又称“缩小增量排序”(Diminishing Increment Sort),是直接插入排序算法的一种更高效的改进版本。该算法的基本思想是:把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,排序算法便终止。

对于希尔排序来说,最关键的就是增量该如何选取。这个增量该怎么确定,这还真是个数学难题,至今没有解答。但是通过大量的实验,还是有个经验值的。我们的例子给出的增量选取公式是:h = 3 * h + 1,下面请看图示说明。

图示说明:

希尔排序

源码实现:

template

void shellSort(Tarr[],int n){

      int h = 1;

      while(h < n / 3)

      {

            h = 3 * h + 1;

      }

      while(h >= 1){

            for(int i = h; i < n; i++)

            {

                  Te = arr[i];

                  int j;

                  for(j = i; j >= h && (e <= arr[j - h]); j -= h){

                        arr[j] = arr[j -h];

                  }

                  arr[j] = e;

            }

            h = h / 3;

      }

      return;

}

分析:从插入排序中我们知道,插入排在待排序数组基本有序时,插入排序的算法效率会非常高,所以我们可以这样认为,希尔排序的最终思想就是:先将整个待排记录序列分割成为若干子序列分别进行直接插入排序,待整个序列中的记录“基本有序”时,在对全体进行一次直接插入排序。

而希尔排序的效率之所以很高,就是因为这个基本思想确实很有用:即当h值大的时候,数据项每一趟排序需要移动元素的个数很少,但数据项移动的距离很长。这是非常有效率的。而当h减小时,每一趟排序需要移动的元素的个数增多,但是此时数据项已经接近于它们排序后最终的位置,这对于插入排序可以更有效率。正是这两种情况的结合才使希尔排序效率那么高。

对于增量的选取,可以称得上是一种魔法。在希尔的原稿中,他建议初始的间距为N/2,简单地把每一趟排序分成了两半。但是,这被证明并不是最好的数列。尽管对于大多数的数据来说这个方法还是比插入排序效果好,但是这种方法有时会使运行时间降到O(N2),这并不比插入排序的效率更高。间隔序列中的数字互质通常被认为很重要:也就是说,除了1之外它们没有公约数。这个约束条件使每一趟排序更有可能保持前一趟排序已排好的效果。希尔最初以N/2为间隔的低效性就是归咎于它没有遵守这个准则。

总结:上面就是四种经典O(n2)级别排序算法的相关说明。其实在各种场合下选择排序和冒泡排序基本上是不会使用的,因为使用场景基本没有。而对于插入排序和希尔排序来说,在待排序数据基本有序的情况下,使用场景还是有的,比如一些日志文件中存储的日志,可能大部分的日志记录都是基于时间排序,只是在某些极端情况下导致一些日志晚存储了导致时间不一致。

我是徐建航,这是我写的第31篇文章,欢迎你加入007社群,七天写一篇,一起写七年,七年之后一起去南极。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,142评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,298评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,068评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,081评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,099评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,071评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,990评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,832评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,274评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,488评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,649评论 1 347
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,378评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,979评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,625评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,796评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,643评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,545评论 2 352

推荐阅读更多精彩内容

  • 一个大“水老壳”的成长历程 在我们老家,将一些社会上混的年轻人称为“水老壳”。他们或正或邪,正者并不为害乡邻,只做...
    鹅公庄主阅读 471评论 8 9
  • transform UIView的属性形变操作(缩放、旋转、平移) .transform 是CGAffineTra...
    彼岸的黑色曼陀罗阅读 337评论 0 0
  • Linux笔记(上)——文件结构及其表示含义 Linux 在软件开发当中,或者是对程序员个人来说都是非常重要的。所...
    Paurlus阅读 161评论 0 1
  • 2017.08.11 在网上搜到的是陈家祠,可到了看到的是陈家书院 我家小的充满自豪地说:“我家先人蛮气派的嘛” ...
    时间煮雨_7d4f阅读 458评论 0 0
  • 清晨的阳光照进窗户,驱散了屋中的黑暗,也将我从梦中拉回现实,梦中的我与你的生活是多么的甜蜜。 ...
    周铱阅读 554评论 1 0