序
本文主要研究一下如何使用opennlp自定义命名实体,标注训练及模型运用。
maven
<dependency>
<groupId>org.apache.opennlp</groupId>
<artifactId>opennlp-tools</artifactId>
<version>1.8.4</version>
</dependency>
实践
训练模型
// train the name finder
String typedEntities = "<START:organization> NATO <END>\n" +
"<START:location> United States <END>\n" +
"<START:organization> NATO Parliamentary Assembly <END>\n" +
"<START:location> Edinburgh <END>\n" +
"<START:location> Britain <END>\n" +
"<START:person> Anders Fogh Rasmussen <END>\n" +
"<START:location> U . S . <END>\n" +
"<START:person> Barack Obama <END>\n" +
"<START:location> Afghanistan <END>\n" +
"<START:person> Rasmussen <END>\n" +
"<START:location> Afghanistan <END>\n" +
"<START:date> 2010 <END>";
ObjectStream<NameSample> sampleStream = new NameSampleDataStream(
new PlainTextByLineStream(new MockInputStreamFactory(typedEntities), "UTF-8"));
TrainingParameters params = new TrainingParameters();
params.put(TrainingParameters.ALGORITHM_PARAM, "MAXENT");
params.put(TrainingParameters.ITERATIONS_PARAM, 70);
params.put(TrainingParameters.CUTOFF_PARAM, 1);
TokenNameFinderModel nameFinderModel = NameFinderME.train("eng", null, sampleStream,
params, TokenNameFinderFactory.create(null, null, Collections.emptyMap(), new BioCodec()));
opennlp使用<START> 及 <END>来进行自定义标注实体,命名实体的话则在START之后用冒号标明,比如<START:person>
参数说明
- ALGORITHM_PARAM
On the engineering level, using maxent is an excellent way of creating programs which perform very difficult classification tasks very well.
- ITERATIONS_PARAM
number of training iterations, ignored if -params is used.
- CUTOFF_PARAM
minimal number of times a feature must be seen
使用模型
上面训练完模型之后,就可以使用该模型进行解析
NameFinderME nameFinder = new NameFinderME(nameFinderModel);
// now test if it can detect the sample sentences
String[] sentence = "NATO United States Barack Obama".split("\\s+");
Span[] names = nameFinder.find(sentence);
Stream.of(names)
.forEach(span -> {
String named = IntStream.range(span.getStart(),span.getEnd())
.mapToObj(i -> sentence[i])
.collect(Collectors.joining(" "));
System.out.println("find type: "+ span.getType()+",name: " + named);
});
输出如下:
find type: organization,name: NATO
find type: location,name: United States
find type: person,name: Barack Obama
小结
opennlp的自定义命名实体的标注,给以了一定定制空间,方便开发者定制各自领域特殊的命名实体,以提高特定命名实体分词的准确性。