字符串匹配--Sunday算法

字符串匹配(查找)算法是一类重要的字符串算法(String Algorithm)。有两个字符串, 长度为m的haystack(查找串)和长度为n的needle(模式串), 它们构造自同一个有限的字母表(Alphabet)。如果在haystack中存在一个与needle相等的子串,返回子串的起始下标,否则返回-1。C/C++、PHP中的strstr函数实现的就是这一功能。LeetCode上也有类似的题目,比如#28#187.

这个问题已经被研究了n多年,出现了很多高效的算法,比较著名的有,Knuth-Morris-Pratt 算法 (KMP)、Boyer-Moore搜索算法、Rabin-Karp算法、Sunday算法等。
提出Sunday算法的人叫Sunday,怎么就不能起些狂拽酷炫吊炸天的名字比如hurricane algorithm/bazinga algorithm 之类的呢?-_-||

针对这个问题,Brut-force的解法很直观:两个串左端对其,然后从needle的最左边字符往右逐一匹配,如果出现失配,则将needle往右移动一位,继续从needle左端开始匹配...如此,直到找到一串完整的匹配,或者haystack结束。时间复杂度是O(mn),看起来不算太糟。入下图所示:
图中红色标记的字母表示第一个发生失配的位置,绿色标记的是完整匹配的位置。



重复这个匹配、右移的过程,每次只将needle右移一个位置

直到找到这么个完整匹配的子串。

限制这个算法效率的因素在于,有很多重复的不必要的匹配尝试。因此想办法减少不必要的匹配,就能提高效率咯。很多高效的字符串匹配算法,它们的核心思想都是一样样的,想办法利用部分匹配的信息,减少不必要的尝试。
Sunday算法利用的是发生失配时查找串中的下一个位置的字母。还是用图来说明:



上图的查找中,在haystack[1]和needle[1]的位置发生失配,接下来要做的事情,就是把needle右移。在右移之前我们先把注意力haystack[3]=d这个位置上。如果needle右移一位,needle[2]=c跟haystack[3]对应,如果右移两位,needle[1]=b跟haystack[3]对应,如果移三位,needle[0]=a跟haystack[3]对应。然后无论以上情况中的哪一种,在haystack[3]这个位置上都会失配(当然在这个位置前面也可能失配),因为haystack[3]=d这个字母根本就不存在于needle中。因此更明智的做法应该是直接移四位,变成这样:



然后我们发现在needle[0]=a,haystack[4]=b位置又失配了,于是沿用上一步的思路,看看haystack[7]=b。这次我们发现字母b是在needle中存在的,那它就有可能形成一个完整的匹配,因为我们完全直接跳过,而应该跳到haystack[7]与needle[1]对应的位置,如下图:

这一次,我们差点就找到了一个完整匹配,可惜needle[0]的位置失配了。不要气馁,再往后,看haystack[9]=z的位置,它不存在于needle中,于是跳到z的下一个位置,然后...:

于是我们顺利地找到了一个匹配!
然后试着从上面的过程中总结出一个算法来。

输入: haystack, needle
Init: i=0, j=0
while i<=len(haystack)-len(needle):
    j=0
    while j<len(needle) and haystack[i+j] equals needle[j]:
        j=j+1
    if j equals len(needle):
        return i
    else
        increase i...

这里有一个问题,发生失配时,i应该增加多少。如果haystack[i+j]位置的字母不存在于needle中,我们知道可以跳到i+j+1的位置。而如果chr=haystack[i+j]存在于needle,我们说可以跳到使chr对应needle中的同一个字母的位置。但问题是,needle中可能有不止一个的字母等于chr。这种情况下,应该跳到哪一个位置呢?为了不遗漏可能的匹配,应该是跳到使得needle中最右一个chr与haystack[i+j]对应,这样跳过的距离最小,且是安全的。
于是我们知道,在开始查找之前,应该做一项准备工作,收集Alphabet中的字母在needle中最右一次出现的位置。我们建立一个O(k)这么大的数组,k是Alphabet的大小,这个数组记录了每一个字母在needle中最右出现的位置。遍历needle,更新对应字母的位置,如果一个字母出现了两次,前一个位置就会被后一个覆盖,另外我们用-1表示根本不在needle中出现。
用occ表示这个位置数组,求occ的过程如下:

输入: needle
Init: occ is a integer array whose size equals len(needle)
fill occ with -1
i=0
while i<len(needle):
    occ[needle[i]]=i
return occ

还有一点需要注意的是,Sunday算法并不限制对needle串的匹配顺序,可以从左往右扫描needle,可以从右往左,甚至任何自定义的顺序。
接下来尝试具体实现一下这个算法,以下是Java程序,这里假设Alphabet就是ASCII字符集。

    public int strStr(String haystack, String needle) {
        int m=haystack.length(), n=needle.length();
        int[] occ=getOCC(needle);
        int jump=0;
        for(int i=0;i<=m-n; i+=jump){
            int j=0;
            while(j<n&&haystack.charAt(i+j)==needle.charAt(j))
                j++;
            if(j==n)
                return i;
            jump=i+n<m ? n-occ[haystack.charAt(i+n)] : 1;
        }
        return -1;
    }

    public int[] getOCC(String p){
        int[] occ=new int[128];
        for(int i=0;i<occ.length;i++)
            occ[i]=-1;
        for(int i=0;i<p.length();i++)
            occ[p.charAt(i)]=i;
        return occ;
    }

现在来分析一下算法。除去预处理阶段计算occ数组,Sunday算法的主要操作是匹配字符和移动(改变haystack的游标i)。算法的时间复杂度主要依赖两个因素,一是i每次能跳过的位置有多少;二是在内部循环尝试匹配时,多快能确定是失配了还是完整匹配了。在最好的情况下,每次失配,occ[haystack[i+j]]都是-1,于是每次i都跳过n+1个位置;并且当在内部循环尝试匹配,总能在第一个字符位置就确定失配了,这样得到时间O(m/n)。比如下图这种情况:



最坏情况下,每次i都只能移动一位,且总是几乎要到needle的末尾才发现失配了。时间复杂度是O(m*n)并不比Brut-force的解法好。比如像这样:



前面提到Sunday算法对needle的扫描顺序是没有限制的。为了提高在最坏情况下的算法效率,可以对needle中的字符按照其出现的概率从小到大的顺序扫描,这样能尽早地确定失配与否。
Sunday算法实际上是对Boyer-Moore算法的优化,并且它更简单易实现。其论文中提出了三种不同的算法策略,结果都优于Boyer-Moore算法。

Reference:
[1] D.M. Sunday: A Very Fast Substring Search Algorithm. Communications of the ACM, 33, 8, 132-142 (1990)
[2] Fachhochschule Flensburg

本文遵守知识共享协议:署名-非商业性使用-相同方式共享 (BY-NC-SA)简书协议转载请注明:作者曾会玩

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,743评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,296评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,285评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,485评论 1 283
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,581评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,821评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,960评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,719评论 0 266
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,186评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,516评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,650评论 1 340
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,329评论 4 330
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,936评论 3 313
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,757评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,991评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,370评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,527评论 2 349

推荐阅读更多精彩内容