speaker论文摘录

Deep Speaker: an End-to-End Neural Speaker Embedding System - 5 May 2017

1、 We experiment with ResCNN and GRU architectures to extract the acoustic features, then mean pool to produce utterance-level speaker embeddings, and train using triplet loss based on cosine similarity.

2、pooling and length normalization layers generate utterance-level speaker embeddings.

3、We also investigate stacked gated recurrent unit (GRU) layers as an alternative for frame-level feature extraction, since they have proven to be effective for speech processing applications [deepspeech 2]

4、We also select hard negative examples at each iteration by checking candidate utterances globally, not just in the same minibatch. This approach provides faster training convergence.

5、We experiment with two different core architectures: a ResNet- style deep CNN and the Deep Speech 2 style architecture consisting of convolutional layers followed by GRU layers.

VoxCeleb2: Deep Speaker Recognition -27 Jun 2018

1、The objective of this paper is speaker recognition under noisy and unconstrained conditions.

2、we develop and compare Convolutional Neural Network (CNN) models and training strategies that can effectively recognise identities from voice under various conditions.

3、In this paper, we present a deep CNN based neural speaker embedding system, named VGGVox, trained to map voice spectrograms to a compact Eu- clidean space where distances directly correspond to a measure of speaker similarity.

4、Unfortunately, speaker recognition still faces a dearth of large-scale freely available datasets in the wild.To address this issue we curate VoxCeleb2, a large scale speaker recognition dataset obtained automatically from open-source media. VoxCeleb2 consists of over a million utterances from over 6k speakers.Since the dataset is collected ‘in the wild’, the speech segments are corrupted with real world noise including laughter, cross-talk, channel effects, music and other sounds. The dataset is also multilingual, with speech from speakers of 145 different nationalities, covering a wide range of accents, ages, ethnicities and languages.

5、We train VGGVox on this dataset in order to learn speaker discriminative embeddings.

6、Our system consists of three main variable parts: an underlying deep CNN trunk architecture, which is used to extract the features, a pooling method which is used to aggregate features to provide a single embedding for a given utterance, and a pairwise loss trained on the features to directly optimise the mapping itself.

7、We experiment with both VGG-M and ResNet based trunk CNN architectures.

8、we propose deep ResNet-based architectures for speaker em- bedding suitable for spectrogram inputs (section 4)

9、we beat the current state of the art for speaker verification on the VoxCeleb1 test set using our embeddings (section 5)

10、The system is trained on short-term magnitude spec-trograms extracted directly from raw audio segments, with no other pre-processing.

11、A deep neural network trunk architecture is used to extract frame level features, which are pooled to ob-tain utterance-level speaker embeddings.

12、The entire model is then trained using contrastive loss.

13、Pre-training using a soft- max layer and cross-entropy over a fixed list of speakers improves model performance; hence we pre-train the trunk architecture model for the task of identification first.

Deep Speaker Embeddings for Short-Duration Speaker Verification - August 2017

1、we apply deep neural networks directly to time- frequency speech representations.

2、Our best model is based on a deep convolutional architecture wherein recordings are treated as images.

3、From our experimental findings we advocate treating utterances as images or speaker snapshots, much like in face recognition.

4、The trials are audio recordings of arbitrary duration, and their phonetic content is unconstrained.

5、we advocate the view of treating a time- frequency representation of speech like an image.

6、Where each image is 5 seconds long and 40 filter-banks wide.

7、In the next section we analyze the problem of modeling speakers with neural networks.

8、We also provide details of the deep network architectures used in this work. This is followed by a section describing our experiments and results.

9、In this context we argue that recognizing speakers has more in common with recognizing faces than recognizing speech. In- deed many ideas from face recognition have been successfully ported to speaker recognition

On Residual CNN in text-dependent speaker verification task

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,384评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,845评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,148评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,640评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,731评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,712评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,703评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,473评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,915评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,227评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,384评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,063评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,706评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,302评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,531评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,321评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,248评论 2 352

推荐阅读更多精彩内容