概述
在前面的文章中我们讲到了如何使用关键字synchronized来实现同步访问。本文我们继续来探讨这个问题,从Java 5之后,在java.util.concurrent.locks包下提供了另外一种方式来实现同步访问,那就是Lock。
synchronized的缺陷
既然都可以通过synchronized来实现同步访问了,那么为什么还需要提供Lock?
在上面一篇文章中,我们了解到如果一个代码块被synchronized修饰了,当一个线程获取了对应的锁,并执行该代码块时,其他线程便只能一直等待,等待获取锁的线程释放锁,而这里获取锁的线程释放锁只会有两种情况:
- 获取锁的线程执行完了该代码块,然后线程释放对锁的占有;
- 线程执行发生异常,此时JVM会让线程自动释放锁。
那么如果这个获取锁的线程由于要等待IO或者其他原因(比如调用sleep方法)被阻塞了,但是又没有释放锁,其他线程便只能干巴巴地等待,这将影响程序执行效率。
因此就需要有一种机制可以不让等待的线程一直无期限地等待下去(比如只等待一定的时间或者能够响应中断),通过Lock就可以办到。
再举个例子:当有多个线程读写文件时,读操作和写操作会发生冲突现象,写操作和写操作会发生冲突现象,但是读操作和读操作不会发生冲突现象。
但是采用synchronized关键字来实现同步的话,就会导致一个问题:如果多个线程都只是进行读操作,所以当一个线程在进行读操作时,其他线程只能等待无法进行读操作。
因此就需要一种机制来使得多个线程都只是进行读操作时,线程之间不会发生冲突,同样通过Lock就可以办到。
另外,通过Lock可以知道线程有没有成功获取到锁。这个是synchronized无法办到的。
Lock和synchronized的不同:
- Lock不是Java语言内置的,synchronized是Java语言的关键字,因此是内置特性。Lock是一个类,通过这个类可以实现同步访问;
- Lock和synchronized有一点非常大的不同,采用synchronized不需要用户去手动释放锁,当synchronized方法或者synchronized代码块执行完之后,系统会自动让线程释放对锁的占用;而Lock则必须要用户去手动释放锁,如果没有主动释放锁,就有可能导致出现死锁现象。
认识Lock
Lock位于java.util.concurrent.locks包下,它是一个接口:
public interface Lock {
void lock();
void lockInterruptibly() throws InterruptedException;
boolean tryLock();
boolean tryLock(long time, TimeUnit unit) throws InterruptedException;
void unlock();
Condition newCondition();
}
在Lock中声明了四个方法来获取锁,那么这四个方法有何区别呢?
-
lock()
lock()方法是平常使用得最多的一个方法,就是用来获取锁。如果锁已被其他线程获取,则进行等待。
采用Lock,必须主动去释放锁,并且在发生异常时,不会自动释放锁。因此一般来说,使用Lock必须在try{}catch{}块中进行,并且将释放锁的操作放在finally块中进行,以保证锁一定被被释放,防止死锁的发生:
Lock lock = ...;
lock.lock();
try{
//处理任务
}catch(Exception ex){
}finally{
lock.unlock(); //释放锁
}
-
tryLock()
tryLock()方法是有返回值的,它表示用来尝试获取锁,如果获取成功,则返回true,如果获取失败(即锁已被其他线程获取),则返回false,也就说这个方法无论如何都会立即返回。在拿不到锁时不会一直在那等待。
Lock lock = ...;
if(lock.tryLock()) {
try{
//处理任务
}catch(Exception ex){
}finally{
lock.unlock(); //释放锁
}
}else {
//如果不能获取锁,则直接做其他事情
}
-
tryLock(long time, TimeUnit unit)
tryLock(long time, TimeUnit unit)方法和tryLock()方法是类似的,只不过区别在于这个方法在拿不到锁时会等待一定的时间,在时间期限之内如果还拿不到锁,就返回false。如果如果一开始拿到锁或者在等待期间内拿到了锁,则返回true。 -
lockInterruptibly()
lockInterruptibly()方法比较特殊,当通过这个方法去获取锁时,如果线程正在等待获取锁,则这个线程能够响应中断,即中断线程的等待状态。也就使说,当两个线程同时通过lock.lockInterruptibly()想获取某个锁时,假若此时线程A获取到了锁,而线程B只有在等待,那么对线程B调用threadB.interrupt()方法能够中断线程B的等待过程。
由于lockInterruptibly()的声明中抛出了异常,所以lock.lockInterruptibly()必须放在try块中或者在调用lockInterruptibly()的方法外声明抛出InterruptedException。
public void method() throws InterruptedException {
Lock lock = ...;
lock.lockInterruptibly();
try {
//.....
}
finally {
lock.unlock();
}
}
注意:当一个线程获取了锁之后,是不会被interrupt()方法中断的。单独调用interrupt()方法不能中断正在运行过程中的线程,只能中断阻塞过程中的线程。
因此当通过lockInterruptibly()方法获取某个锁时,如果不能获取到进行等待的情况下,是可以响应中断的。
而用synchronized修饰的话,当一个线程处于等待某个锁的状态,是无法被中断的,只有一直等待下去。
ReentrantLock
ReentrantLock,意思是“可重入锁”,ReentrantLock是唯一实现了Lock接口的类,并且ReentrantLock提供了更多的方法。下面通过一些实例看具体看一下如何使用ReentrantLock。
lock()的正确使用方法
先看以下代码示例:
public class Test {
private ArrayList<Integer> arrayList = new ArrayList<>();
public static void main(String[] args) {
final Test test = new Test();
new Thread() {
public void run() {
test.insert(Thread.currentThread());
}
}.start();
new Thread() {
public void run() {
test.insert(Thread.currentThread());
}
}.start();
}
public void insert(Thread thread) {
Lock lock = new ReentrantLock(); //注意这个地方
lock.lock();
try {
System.out.println(thread.getName() + "得到了锁");
for (int i = 0; i < 5; i++) {
arrayList.add(i);
}
} catch (Exception e) {
// TODO: handle exception
} finally {
System.out.println(thread.getName() + "释放了锁");
lock.unlock();
}
}
}
运行结果:
Thread-0得到了锁
Thread-1得到了锁
Thread-0释放了锁
Thread-1释放了锁
怎么会输出这个结果?第二个线程怎么会在第一个线程释放锁之前得到了锁?
原因在于,在insert方法中的lock变量是局部变量,每个线程执行该方法时都会保存一个副本,那么理所当然每个线程执行到lock.lock()处获取的是不同的锁,所以就不会发生冲突。
正确的使用方式如下:
public class Test {
private ArrayList<Integer> arrayList = new ArrayList<>();
private Lock lock = new ReentrantLock(); //注意这个地方
public static void main(String[] args) {
final Test test = new Test();
new Thread() {
public void run() {
test.insert(Thread.currentThread());
}
}.start();
new Thread() {
public void run() {
test.insert(Thread.currentThread());
}
}.start();
}
public void insert(Thread thread) {
lock.lock();
try {
System.out.println(thread.getName() + "得到了锁");
for (int i = 0; i < 5; i++) {
arrayList.add(i);
}
} catch (Exception e) {
// TODO: handle exception
} finally {
System.out.println(thread.getName() + "释放了锁");
lock.unlock();
}
}
}
程序运行结果:
Thread-0得到了锁
Thread-0释放了锁
Thread-1得到了锁
Thread-1释放了锁
tryLock()的使用方法
public class Test {
private ArrayList<Integer> arrayList = new ArrayList<Integer>();
private Lock lock = new ReentrantLock(); //注意这个地方
public static void main(String[] args) {
final Test test = new Test();
new Thread() {
public void run() {
test.insert(Thread.currentThread());
}
}.start();
new Thread() {
public void run() {
test.insert(Thread.currentThread());
}
}.start();
}
public void insert(Thread thread) {
if (lock.tryLock()) {
try {
System.out.println(thread.getName() + "得到了锁");
for (int i = 0; i < 5; i++) {
arrayList.add(i);
}
} catch (Exception e) {
// TODO: handle exception
} finally {
System.out.println(thread.getName() + "释放了锁");
lock.unlock();
}
} else {
System.out.println(thread.getName() + "获取锁失败");
}
}
}
lockInterruptibly()响应中断的使用方法
public class Test {
private Lock lock = new ReentrantLock();
public static void main(String[] args) {
Test test = new Test();
MyThread thread1 = new MyThread(test);
MyThread thread2 = new MyThread(test);
thread1.start();
thread2.start();
try {
Thread.sleep(2000);
} catch (InterruptedException e) {
e.printStackTrace();
}
thread2.interrupt();
}
public void insert(Thread thread) throws InterruptedException {
lock.lockInterruptibly(); //注意,如果需要正确中断等待锁的线程,必须将获取锁放在外面,然后将InterruptedException抛出
try {
System.out.println(thread.getName() + "得到了锁");
long startTime = System.currentTimeMillis();
for (; ; ) {
if (System.currentTimeMillis() - startTime >= Integer.MAX_VALUE)
break;
//插入数据
}
} finally {
System.out.println(Thread.currentThread().getName() + "执行finally");
lock.unlock();
System.out.println(thread.getName() + "释放了锁");
}
}
}
class MyThread extends Thread {
private Test test = null;
public MyThread(Test test) {
this.test = test;
}
@Override
public void run() {
try {
test.insert(Thread.currentThread());
} catch (InterruptedException e) {
System.out.println(Thread.currentThread().getName() + "被中断");
}
}
}
ReadWriteLock
ReadWriteLock也是一个接口,在它里面只定义了两个方法:
public interface ReadWriteLock {
/**
* Returns the lock used for reading.
*
* @return the lock used for reading
*/
Lock readLock();
/**
* Returns the lock used for writing.
*
* @return the lock used for writing
*/
Lock writeLock();
}
一个用来获取读锁,一个用来获取写锁。也就是说将文件的读写操作分开,分成2个锁来分配给线程,从而使得多个线程可以同时进行读操作。
下面的ReentrantReadWriteLock实现了ReadWriteLock接口。
ReentrantReadWriteLock
ReentrantReadWriteLock里面提供了很多丰富的方法,不过最主要的有两个方法:
- readLock() 用来获取读锁
- writeLock() 用来获取写锁
下面通过几个例子来看一下ReentrantReadWriteLock具体用法。
假如有多个线程要同时进行读操作的话,先看一下synchronized达到的效果:
public class Test {
private ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();
public static void main(String[] args) {
final Test test = new Test();
new Thread() {
public void run() {
test.get(Thread.currentThread());
}
}.start();
new Thread() {
public void run() {
test.get(Thread.currentThread());
}
}.start();
}
public synchronized void get(Thread thread) {
long start = System.currentTimeMillis();
while (System.currentTimeMillis() - start <= 1) {
System.out.println(thread.getName() + "正在进行读操作");
}
System.out.println(thread.getName() + "读操作完毕");
}
}
这段程序的输出结果是:直到thread1执行完读操作之后,才会打印thread2执行读操作的信息。
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0读操作完毕
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1读操作完毕
该用读写锁:
public class Test {
private ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();
public static void main(String[] args) {
final Test test = new Test();
new Thread() {
public void run() {
test.get(Thread.currentThread());
}
}.start();
new Thread() {
public void run() {
test.get(Thread.currentThread());
}
}.start();
}
public void get(Thread thread) {
rwl.readLock().lock();
try {
long start = System.currentTimeMillis();
while (System.currentTimeMillis() - start <= 1) {
System.out.println(thread.getName() + "正在进行读操作");
}
System.out.println(thread.getName() + "读操作完毕");
} finally {
rwl.readLock().unlock();
}
}
}
运行结果:
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-0读操作完毕
Thread-1读操作完毕
说明thread1和thread2在同时进行读操作,这样就大大提升了读操作的效率。
注意:
- 如果有一个线程已经占用了读锁,则此时其他线程如果要申请写锁,则申请写锁的线程会一直等待释放读锁。
- 如果有一个线程已经占用了写锁,则此时其他线程如果申请写锁或者读锁,则申请的线程会一直等待释放写锁。
总结
Lock和synchronized有以下几点不同:
- Lock是一个接口,而synchronized是Java中的关键字,synchronized是内置的语言实现;
- synchronized在发生异常时,会自动释放线程占有的锁,因此不会导致死锁现象发生;而Lock在发生异常时,如果没有主动通过unLock()去释放锁,则很可能造成死锁现象,因此使用Lock时需要在finally块中释放锁;
- Lock可以让等待锁的线程响应中断,而synchronized却不行,使用synchronized时,等待的线程会一直等待下去,不能够响应中断;
- 通过Lock可以知道有没有成功获取锁,而synchronized却无法办到。
- Lock可以提高多个线程进行读操作的效率。
Synchronized
- 优点:实现简单,语义清晰,便于JVM堆栈跟踪;加锁解锁过程由JVM自动控制,提供了多种优化方案。
- 缺点:不能进行高级功能(定时,轮询和可中断等)。
Lock
- 优点:可定时的、可轮询的与可中断的锁获取操作,提供了读写锁、公平锁和非公平锁
- 缺点:需手动释放锁unlock,不适合JVM进行堆栈跟踪。
最后再贴一段Doug Lea大神在书中,关于在Synchronized和ReentrantLock之间进行选择的原话: