EdgeBox&DPM

EdgeBox与DPM均是用于进行目标检测。

EdgeBox的算法原理大体如下图所示:

在这儿参考了一片博客blog.sina.com.cn/s/blog_e1b9226a0102w5rt.html,大体总结Edgebox进行目标检测的思路为:首先利用结构化的方法检测出边缘,并利用非极大值抑制对边缘进行筛选;然后基于某种策略将似乎在一条直线上的边缘点集合成若干个edge group,并计算edge group之间的相似度,越是在同一直线上的edge group,其相似度越高。再通过edge group来确定轮廓数,实现策略为给每个edge group计算一个权值,将权值为1的edge group归为proposal内轮廓上的一部分,将权值为 0 的edge group归为proposal外或proposal框重叠的一部分,由此便提取得到proposal,并对proposal进行评分,选取得分最高的proposal作为最后的检测输出。

但是该算法有一个明显的缺陷是当一幅图像中包含多个相同的检测目标时,其得分最高的proposal几乎包含整幅图像,而不是单独的目标。原因在于,其不是基于“学习”的算法,没有训练的过程,也就没有具体的针对目标的模型,故这使得其在进行单一类别多目标检测时效果不佳。


DPM(Deformable Parts Model):

由名字可以看出,该目标检测的模型是可变形的,即具有一定的弹性。参考了博文blog.csdn.net/carson2005/article/details/22499565

其与HoG的大体思路一致,训练得到一个目标的梯度模型,然后再根据该梯度模型对待检测目标进行匹配操作。只是DPM在形成模型时做了更多的改进工作,相比于Hog的但模型结构,其得到的是多模型结构。

其大体流程为:

训练得到多个主模型(即不同视角下的物体表征),然后形成多个子模型结构,在进行检测时,根据主模型与子模型两者匹配结果的综合,来实现目标的最终检测结果。之所以会有子模型结构的提出,主要是为了解决非刚性物体的形变问题,利用子模型与主模型间的先验知识(如距离等)来判断出在产生形变后的物体是否仍为待检目标。其检测流程可见下图:

即首先利用主模型对图像进行匹配操作,然后利用子模型对图像进行匹配操作,最后将匹配后的结果进行某种运算,即基于子模型高相应中心是否在理论上该出现的位置,最后将结果进行综合得到最后的检测结果。

DPM模型的本质是 一种弹簧模型,即允许待检测物体产生一定程度上的形变,由主模型与子模型间的检测结果的综合来实现检测任务。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,080评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,422评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,630评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,554评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,662评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,856评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,014评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,752评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,212评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,541评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,687评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,347评论 4 331
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,973评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,777评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,006评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,406评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,576评论 2 349

推荐阅读更多精彩内容