NumPy--ndarray 的创建和各种数据类型

ndarray 的创建和各种数据类型

创建

由一维数组创建

import numpy as np
data = [6,8,2,3,4,4]
arr = np.array(data)
print(arr)
arr.ndim
类型 说明
array 将输入数据(列表、元组、数组或其它序列类型)转换为ndarray。要么推断出dtype, 要么显示指定dtype。默认直接复制输入数据。
asarray 将输入转换为darray,如果输入本身就是一个ndarray就不进行复制。
arange 类似于内置的range,但返回一个ndarray而不是列表。
ones, ones_like 根据指定形状和dtype创建一个全1数组。ones_like以另一个数组为参数,并根据其形 状和dtype创建一个全1数组。
zeros, zeros_like 类似于ones和ones_like,只不过产生的是全0数组而已。
empty, empty_like 创建数组,只分配内存空间但不填充任何值。
eye, identity 创建一个正方的N * N单位矩阵

多维数组内存结构

普通二维数组创建

data = [[1,2,3,4],[5,6,7,8.0]]
arr = np.array(data)
print(arr)
arr.shape
arr.dtype
arr.ndim

zeros

np.zeros(10)
np.zeros((3,4))

empty 未初始化的数组

np.empty((2,2,3))
np.empty((2,2,3),int)

ones

np.ones((2,3))
np.ones((2,3),int)

arange

np.arange(10)

生成数组时指定数据类型

arr = np.array([1,2,3],dtype = np.int32)
arr = np.array([1,2,3],dtype = np.float32)
print(arr)

astype

int_arr = np.array([1,2,3,4,5])
int_arr.dtype
float_arr = int_arr.astype(dtype = np.float32 )
float_arr.dtype

假如是有浮点型向整形转换 小数部分会被舍弃

float_arr = np.array([2.2,3.3,4.4,5.5])
int_arr = float_arr.astype(dtype = np.int)
print(float_arr)

把字符串序列转化为数组

str_arr = np.array(['1.1','2.2','3.3','4.4'],dtype = np.string_)
str_arr
float_arr = str_arr.astype(dtype = np.float32)
print(float_arr)
print(float_arr.dtype)

把其他数组的数据类型作为astype的参数

int_arr = np.arange(10)
float_arr2 = int_arr.astype(float_arr.dtype)
print(float_arr2)
print(float_arr2.dtype)

数组和标量之间的运算

大小相等的数组之间的任何算术运算都会将运算应用到元素级

数组与标量的算术运算也会将那个标量值传播到各个元素

arr = np.array([[1,2,3],[4,5,6]])
arr.shape
print(arr)
print(arr*arr)
print(arr+arr)
print(arr-arr)
print(arr*3)
print(1/arr)
print(arr**0.5)
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,084评论 6 503
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,623评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,450评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,322评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,370评论 6 390
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,274评论 1 300
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,126评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,980评论 0 275
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,414评论 1 313
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,599评论 3 334
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,773评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,470评论 5 344
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,080评论 3 327
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,713评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,852评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,865评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,689评论 2 354

推荐阅读更多精彩内容