Description
Merge k sorted linked lists and return it as one sorted list. Analyze and describe its complexity.
Solution
Divide & Conquer, time O(n * log n), space O(1)
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
class Solution {
public ListNode mergeKLists(ListNode[] lists) {
if (lists == null) {
return null;
}
return mergeKLists(lists, 0, lists.length - 1);
}
public ListNode mergeKLists(ListNode[] lists, int start, int end) {
if (start > end) {
return null;
}
if (start == end) {
return lists[start];
}
int mid = start + (end - start) / 2;
return merge(mergeKLists(lists, start, mid)
, mergeKLists(lists, mid + 1, end));
}
public ListNode merge(ListNode p, ListNode q) {
if (p == null) {
return q;
}
if (q == null) {
return p;
}
if (p.val <= q.val) {
p.next = merge(p.next, q);
return p;
} else {
q.next = merge(p, q.next);
return q;
}
}
}
MinHeap, time O(k * log k), space O(k)
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
class Solution {
public ListNode mergeKLists(ListNode[] lists) {
if (lists == null) {
return null;
}
PriorityQueue<ListNode> queue
= new PriorityQueue<ListNode>((a, b) -> a.val - b.val);
for (ListNode list : lists) {
if (list == null) continue;
queue.offer(list);
}
ListNode dummy = new ListNode(0);
ListNode tail = dummy;
while (!queue.isEmpty()) {
ListNode p = queue.poll();
tail.next = p;
tail = p;
if (p.next == null) continue;
queue.offer(p.next);
}
return dummy.next;
}
}