1、时间复杂度
(1)时间频度 一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了。并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。
(2)时间复杂度 在刚才提到的时间频度中,n称为问题的规模,当n不断变化时,时间频度T(n)也会不断变化。但有时我们想知道它变化时呈现什么规律。为此,我们引入时间复杂度概念。 一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n)),称O(f(n)) 为算法的渐进时间复杂度,简称时间复杂度。
常见的算法时间复杂度由小到大依次为:Ο(1)<Ο(log2n)<Ο(n)<Ο(nlog2n)<Ο(n2)<Ο(n3)<…<Ο(2n)<Ο(n!)
常见排序算法的时间复杂度和空间复杂度
2、空间复杂度
空间复杂度是对一个算法在运行过程中临时占用存储空间的度量,换句话说就是被创建次数最多的变量,它被创建了多少次,那么这个算法的空间复杂度就是多少。
一个算法在计算机存储器上所占用的存储空间包括存储算法本身所占用的空间,算数和输入输出所占用的存储空间以及临时占用存储空间三个部分,算法的输入输出数据所占用的存储空间是由待解决的问题来决定的,通过参数表由调用函数而来,它随本算法的不同而改变,存储算法本身所占用的存储空间有算法的书写长短成正比。算法在运行过程中占用的临时空间由不同的算法决定。举个例子:
for(int i=0;i < n;i++){
int temp = i;
}
和
int temp=0;
for(int i=0;i < n;i++){temp = i;
}
前者空间复杂度就是O(n),而后者空间复杂度就是O(1)常数阶。很好理解,前者每循环一次都会重新创建一个temp对象,而后者只在循环外面创建了一个temp对象,每次循环只是给他不同的引用而已。所以有个规律,如果算法语句中就有创建对象,那么这个算法的时间复杂度和空间复杂度一般一致,很好理解,算法语句被执行了多少次就创建了多少对象。
参考:https://blog.csdn.net/weixin_42447959/article/details/83003233