algorithms-ch1-Algorithms with numbers

1.1Basic arithmetic

1.1.1addition

-Given two binary numbers x and y, how long does our algorithm take to add them?
-We want the answer expressed as a function of the size of the input: the number of bits of x and y, the number of keystrokes needed to type them in.

Suppose x and y are each n bits long; O(n).

1.1.2multiplication

二进制乘法的两个算法:


0.0

If x and y are both n bits, then there are n intermediate rows, with lengths of up to 2n bits (taking the shifting into account). The total time taken to add up these rows, doing two numbers at a time, is O(n) + O(n) + · · · + O(n)..(n-1 times): O(n^2)


@.@
function multiply(x, y)
Input: Two n-bit integers x and y, where y ≥ 0
Output: Their product
/
if y=0: return0
z = multiply(x, ⌊y/2⌋)
//每次递归调用,接收到返回值之后 向递归下一步执行
if y is even:
  return 2z
else:
  return x + 2z
function divide(x,y)
Input: Two n-bit integers x and y, where y ≥ 1
Output: The quotient and remainder of x divided by y
/
if x = 0: return (q,r) = (0,0)
(q, r) = divide(⌊x/2⌋, y)
q=2·q, r=2·r
if x is odd: r=r+1
if r≥y: r=r−y, q=q+1
return (q,r)
1.2mod
  1. if x = qN + r with 0 ≤ r < N, then x modulo N is equal to r.

  2. x and y are congruent modulo N if they differ by a multiple of N , or in symbols:

x≡y (modN) ⇐⇒ N divides (x−y).

  1. Substitution rule
    If x ≡ x′ (mod N) and y ≡ y′ (mod N), then:x+y≡x′+y′ (modN) and xy≡x′y′ (modN).

  2. Modular addition and multiplication:

  • addition: O(n),
    n = ⌈log N ⌉ is the size of N ;(regard N as a binary number, n is the bits of this number, each bits need one operations)
    To add two numbers x and y modulo N, Since x and y are eachin the range 0 to N −1, their sum is between 0 and 2(N −1), The overall computation therefore consists of an addition, and possibly a subtraction

  • multiplication: O(n^2)
    using our quadratic-time division algorithm.Multiplication thus remains a quadratic operation.

  • Division: O(n^3)

  1. Modular exponentiation
    -Problem: compute x^y mod N for values of x, y, and N that are several hundred bits long
    -Sol1: x mod N →x^2 mod N →x^3 mod N →···→x^y mod N,
    -Sol2: x mod N →x^2 mod N →x^4 mod N →x8^ mod N →···→x2^⌊logy⌋ mod N.
    a polynomial time algorithm:
function modexp(x, y, N)
Input: Two n-bit integers x and N, an integer exponent y
Output: x^y mod N
/
if y=0: return1
z = modexp(x, ⌊y/2⌋, N )
if y is even:
  return z^2 mod N
else:
  return x · z^2 mod N
  1. Euclid's Alg for Great Common Divisor

Euclid’s rule If x and y are positive integers with x ≥ y, then gcd(x, y) = gcd(x mod y, y).

Lemma If a ≥ b,then a mod b < a/2.

function Euclid(a,b)
Input: Two integers a and b with a≥b≥0
Output: gcd(a, b)
/
if b=0: return a
return Euclid(b, a mod b)

both arguments, a and b, If they are initially n-bit integers, then the base case will be reached within 2n recursive calls. And since each call involves a quadratic-time division, the total time is O(n3).

Lemma if d divides both a and b, and d = ax + by for some integers x and y(may be negative) , then necessarily d = gcd(a,b)

function extended-euclid(a,b)
Input: Two positive integers a and b with a ≥ b ≥ 0
Output: Integers x,y, d, such that d=gcd(a,b) and ax+by=d
/
if b = 0: return (1,0,a)
(x′, y′, d) = Extended-Euclid(b, a mod b)
return (y′, x′ − ⌊a/b⌋y′, d)

模除法:gcd(a,N) = 1(即互质) <==> 存在x,使得ax ≡ 1 (mod N) (可用反证法证明)
左推右:用extend-euclid algorithm可以得到x,y
右推左:如果ax+Ny=d(gcd<=d), 且d整除a, N(d <=gcd),那么d==gcd(a, N)

  1. x is the multiplicative inverse of a modulo N if ax ≡ 1 (mod N).

Modular division theorem For any a mod N, a has a multiplicative inverse modulo N if and only if it is relatively prime to N. When this inverse exists, it can be found in time O(n3)(where as usual n denotes the number of bits of N ) by running the extended Euclid algorithm.

1.3prime
function primality(N)
Input: Positive integer N
Output: yes/no
/
Pick a positive integer a < N at random 
if a^(N−1) ≡ 1 (mod N):
  return yes
else:
  return no

exercise都是clrs上的不附了

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,919评论 6 502
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,567评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,316评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,294评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,318评论 6 390
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,245评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,120评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,964评论 0 275
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,376评论 1 313
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,592评论 2 333
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,764评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,460评论 5 344
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,070评论 3 327
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,697评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,846评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,819评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,665评论 2 354

推荐阅读更多精彩内容