交叉熵损失函数原理详解

交叉熵损失函数原理详解

  • 之前在代码中经常看见交叉熵损失函数(CrossEntropy Loss),只知道它是分类问题中经常使用的一种损失函数,对于其内部的原理总是模模糊糊,而且一般使用交叉熵作为损失函数时,在模型的输出层总会接一个softmax函数,至于为什么要怎么做也是不懂,所以专门花了一些时间打算从原理入手,搞懂它,故在此写一篇博客进行总结,以便以后翻阅。

交叉熵简介

  • 交叉熵是信息论中的一个重要概念,主要用于度量两个概率分布间的差异性,要理解交叉熵,需要先了解下面几个概念。

信息量

  • 信息奠基人香农(Shannon)认为“信息是用来消除随机不确定性的东西”,也就是说衡量信息量的大小就是看这个信息消除不确定性的程度。

  • “太阳从东边升起”,这条信息并没有减少不确定性,因为太阳肯定是从东边升起的,这是一句废话,信息量为0。

  • ”2018年中国队成功进入世界杯“,从直觉上来看,这句话具有很大的信息量。因为中国队进入世界杯的不确定性因素很大,而这句话消除了进入世界杯的不确定性,所以按照定义,这句话的信息量很大。

  • 根据上述可总结如下:信息量的大小与信息发生的概率成反比。概率越大,信息量越小。概率越小,信息量越大。

  • 设某一事件发生的概率为P(x),其信息量表示为:
    I(x)=-\log (P(x))
    其中I(x)I(x)表示信息量,这里loglog表示以e为底的自然对数。

信息熵

  • 信息熵也被称为熵,用来表示所有信息量的期望。

  • 期望是试验中每次可能结果的概率乘以其结果的总和。

  • 所以信息量的熵可表示为:(这里的X是一个离散型随机变量)
    \left.H(\mathbf{X})=-\sum_{i=1}^{n} P\left(x_{i}\right) \log \left(P\left(x_{i}\right)\right)\right)\quad\left(\mathbf{X}=x_{1}, x_{2}, x_{3} \ldots, x_{n}\right)

  • 使用明天的天气概率来计算其信息熵:

序号 事件 概率P 信息量
1 明天是晴天 0.5 -\log (0.5)
2 明天出雨天 0.2 -\log (0.2)
3 多云 0.3 -\log (0.3)

H(\mathbf{X})=-(0.5 * \log (0.5)+0.2 * \log (0.2)+0.3 * \log (0.3))

对于0-1分布的问题,由于其结果只用两种情况,是或不是,设某一件事情发生的概率为P(x),则另一件事情发生的概率为1−P(x),所以对于0-1分布的问题,计算熵的公式可以简化如下:
\begin{array}{c} H(\mathbf{X})=-\sum_{n=1}^{n} P\left(x_{i} \log \left(P\left(x_{i}\right)\right)\right) \\ =-[P(x) \log (P(x))+(1-P(x)) \log (1-P(x))]] \\ =-P(x) \log (P(x))-(1-P(x)) \log (1-P(x)) \end{array}

相对熵(KL散度)

如果对于同一个随机变量X有两个单独的概率分布P(x)和Q(x),则我们可以使用KL散度来衡量这两个概率分布之间的差异

下面直接列出公式,再举例子加以说明。
D_{K L}(p \| q)=\sum_{i=1}^{n} p\left(x_{i}\right) \log \left(\frac{p\left(x_{i}\right)}{q\left(x_{i}\right)}\right)
在机器学习中,常常使用P(x)来表示样本的真实分布,Q(x)来表示模型所预测的分布,比如在一个三分类任务中(例如,猫狗马分类器),x1​,x2​,x3​分别代表猫,狗,马,例如一张猫的图片真实分布P(X)=[1,0,0], 预测分布Q(X)=[0.7,0.2,0.1],计算KL散度:
\begin{aligned} D_{K L}(p|| q) &=\sum_{i=1}^{n} p\left(x_{i}\right) \log \left(\frac{p\left(x_{i}\right)}{q\left(x_{i}\right)}\right) \\ =p\left(x_{1}\right) \log \left(\frac{p\left(x_{1}\right)}{q\left(x_{1}\right)}\right) &+p\left(x_{2}\right) \log \left(\frac{p\left(x_{2}\right)}{q\left(x_{2}\right)}\right)+p\left(x_{3}\right) \log \left(\frac{p\left(x_{3}\right)}{q\left(x_{3}\right)}\right) \\ =& 1 * \log \left(\frac{1}{0.7}\right)=0.36 \end{aligned}
KL散度越小,表示P(x)与Q(x)的分布更加接近,可以通过反复训练Q(x)来使Q(x)的分布逼近P(x)。

交叉熵

首先将KL散度公式拆开:
\begin{array}{c} D_{K L}(p \| q)=\sum_{i=1}^{n} p\left(x_{i}\right) \log \left(\frac{p\left(x_{i}\right)}{q\left(x_{i}\right)}\right) \\ =\sum_{i=1}^{n} p\left(x_{i}\right) \log \left(p\left(x_{i}\right)\right)-\sum_{i=1}^{n} p\left(x_{i}\right) \log \left(q\left(x_{i}\right)\right) \\ =-H(p(x))+\left[-\sum_{i=1}^{n} p\left(x_{i}\right) \log \left(q\left(x_{i}\right)\right)\right] \end{array}
前者H(p(x))表示信息熵,后者即为交叉熵,KL散度 = 交叉熵 - 信息熵

交叉熵公式表示为:
H(p, q)=-\sum_{i=1}^{n} p\left(x_{i}\right) \log \left(q\left(x_{i}\right)\right)
在机器学习训练网络时,输入数据与标签常常已经确定,那么真实概率分布P(x)也就确定下来了,所以信息熵在这里就是一个常量。由于KL散度的值表示真实概率分布P(x)与预测概率分布Q(x)之间的差异,值越小表示预测的结果越好,所以需要最小化KL散度,而交叉熵等于KL散度加上一个常量(信息熵),且公式相比KL散度更加容易计算,所以在机器学习中常常使用交叉熵损失函数来计算loss就行了。

交叉熵在单分类问题中的应用

在线性回归问题中,常常使用MSE(Mean Squared Error)作为loss函数,而在分类问题中常常使用交叉熵作为loss函数。

下面通过一个例子来说明如何计算交叉熵损失值。

假设我们输入一张狗的图片,标签与预测值如下:

*
Label 0 1 0
Pred 0.2 0.7 0.1

那么loss
\operatorname{los} s=-(0 * \log (0.2)+1 * \log (0.7)+0 * \log (0.1))=0.36
一个batch的loss为
\operatorname{los} s=-\frac{1}{m} \sum_{i=1}^{m} \sum_{j=1}^{n}p\left(x_{i j}\right) \log \left(q\left(x_{i j}\right)\right)
其中m表示样本个数。

总结:

  • 交叉熵能够衡量同一个随机变量中的两个不同概率分布的差异程度,在机器学习中就表示为真实概率分布与预测概率分布之间的差异。交叉熵的值越小,模型预测效果就越好。

  • 交叉熵在分类问题中常常与softmax是标配,softmax将输出的结果进行处理,使其多个分类的预测值和为1,再通过交叉熵来计算损失。

参考:

https://blog.csdn.net/tsyccnh/article/details/79163834

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 194,242评论 5 459
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 81,769评论 2 371
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 141,484评论 0 319
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 52,133评论 1 263
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 61,007评论 4 355
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 46,080评论 1 272
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 36,496评论 3 381
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 35,190评论 0 253
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 39,464评论 1 290
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 34,549评论 2 309
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 36,330评论 1 326
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 32,205评论 3 312
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 37,567评论 3 298
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 28,889评论 0 17
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,160评论 1 250
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 41,475评论 2 341
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 40,650评论 2 335

推荐阅读更多精彩内容