是什么限制了人工智能的大规模应用?

为了回答这个问题,国外有一个叫Christensen的科学家,在互联网上爬取了7192个AI创业公司的数据,总结出当前限制AI应用的几大原因。
这7192多家公司可以分为三类 第一类为部分使用到AI技术的公司(橙色) 第二类为提供AI基础设施的公司(红色) 第三类为把AI作为为核心技术的公司(蓝色)

总融资超过19亿美元,员工总数超过15万人。

人为限制

人工审核工作繁重。许多AI算法在执行之后也需要人为监督,比如Facebook就有超过15000人的审核团队,国内字节跳动等公司也有大规模的人工内容审核团队。

数据标注重人工。还是人工太高的问题,任何AI算法都需要大量数据集,因此AI公司们必须自建标注团队或将标注任务外包给数据标注公司,无论用哪种方式,都需要大量的“数据民工”付出繁重的劳动。

人才匮乏。AI专业人才的高身价,大家有目共睹,各个国家都面临人才短缺的状况。

数据限制

数据创建难题。对许多传统公司来说,他们不会自动生成AI模型训练需要的数据,比如线下零售就缺乏电商那样的详尽数据。

基础设施限制。许多企业对于云、数据安全的投入有限。

现有数据结构混乱。许多公司的数据都并未进行有条理、统一管理的存放,每个部门。每个团队都在各搞各的,格式、标签都不一样。

依赖第三方数据。有些公司自有数据不够,买第三方数据非常贵。

收集数据要很久。许多行业中,收集数据需要非常复杂的过程,比如慢性病的医疗数据。

市场限制

AI迫使许多行业改变商业模式。因为AI的存在,许多行业不得不改变现有商业模式,假设如果自动驾驶技术和法律法规成熟,车厂们可能就要转而直接提供运输服务了。同时AI应用会改变传统工作的流程

算法准确率要求高。AI算法的执行都是有准确率的,像人脸识别场景,美国政府测试的结果发现,黑人的识别错误率比白人高5到10倍,在医疗、自动驾驶方面,一旦出现不准确的情况,结果都是致命的。

AI可解释性是难题。当一个工具出炉,大众和监管机构通常需要能将其解释清楚,但AI算法的黑箱性则说不清。AI为什么不批准你的贷款?说不清,就会产生纠纷。

有偏见的AI。由于数据的偏差,AI算法经常做出有偏见、歧视性的决策。

AI的隐私威胁。由于AI算法训练需要大量数据,因此许多私人数据都被拿来投喂给AI,这让许多人面临个人隐私泄露的风险,因此也会受到监管和大众的阻力。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,590评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 86,808评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,151评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,779评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,773评论 5 367
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,656评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,022评论 3 398
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,678评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,038评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,659评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,756评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,411评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,005评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,973评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,053评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,495评论 2 343